Boosting Aerobic Oxidation of Alcohols via Synergistic Effect between TEMPO and a Composite Fe3O4/Cu-BDC/GO Nanocatalyst

. 2020 Mar 17 ; 5 (10) : 5182-5191. [epub] 20200309

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32201806

Fabrication of a nanocomposite catalyst via a novel and efficient strategy remains a challenge; Fe3O4 nanoparticles anchored on graphene oxide (GO) sheet-supported metal-organic frameworks (MOFs). In this study, the physicochemical properties of the ensuing Fe3O4/Cu-BDC/GO are investigated using Fourier transform infrared spectrum, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray detector, and atomic absorption spectroscopy. The salient features of the nanocomposite such as Cu-MOF, synergistic effect with GO sheets, and magnetic separation characteristics make it an excellent ternary heterostructure for aerobic oxidation of alcohols. The proposed nanocatalyst and co-catalyst 2,2,6,6-tetramethylpiperidine-N-oxyl substantially enhance the catalytic performance for the aerobic oxidation under very mild and sustainable reaction conditions. The heterogeneity of Fe3O4/Cu-BDC/GO composite catalyst is affirmed with the added advantage that the initial activity is well maintained even after seven cycles.

Zobrazit více v PubMed

Zhang K.; Suh J. M.; Choi J. W.; Jang H. W.; Shokouhimehr M.; Varma R. S. Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water. ACS Omega 2019, 4, 483–495. 10.1021/acsomega.8b03051. PubMed DOI PMC

Zhuang J. L.; Liu X. Y.; Zhang Y.; Wang C.; Mao H. L.; Guo J.; Terfort A. Zr-Metal–Organic Frameworks Featuring TEMPO Radicals: Synergistic Effect between TEMPO and Hydrophilic Zr-Node Defects Boosting Aerobic Oxidation of Alcohols. ACS Appl. Mater. Interfaces 2019, 11, 3034–3043. 10.1021/acsami.8b18370. PubMed DOI

Wertz S.; Studer A. Nitroxide-Catalyzed Transition-Metal-Free Aerobic Oxidation Processes. Green Chem. 2013, 15, 3116–3134. 10.1039/c3gc41459k. DOI

Ryland B. L.; Stahl S. S. Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Copper/TEMPO and Related Catalyst Systems. Angew. Chem., Int. Ed. 2014, 53, 8824–8838. 10.1002/anie.201403110. PubMed DOI PMC

Karimi B.; Biglari A.; Clark J. H.; Budarin V. Green, Transition-Metal-Free Aerobic Oxidation of Alcohols Using a Highly Durable Supported Organocatalyst. Angew. Chem., Int. Ed. 2007, 46, 7210–7213. 10.1002/anie.200701918. PubMed DOI

Karimi B.; Rafiee M.; Alizadeh S.; Vali H. Eco-Friendly Electrocatalytic Oxidation of Alcohols on a Novel Electro Generated TEMPO-Functionalized MCM-41 Modified Electrode. Green Chem. 2015, 17, 991–1000. 10.1039/C4GC01303D. DOI

Karimi B.; Vahdati S.; Vali H. Synergistic Catalysis within TEMPO-Functionalized Periodic Mesoporous Organosilica with Bridge Imidazolium Groups in the Aerobic Oxidation of Alcohols. RSC Adv. 2016, 6, 63717–63723. 10.1039/C6RA15483B. DOI

Gheorghe A.; Chinnusamy T.; Cuevas-Yañez E.; Hilgers P.; Reiser O. Combination of Perfluoroalkyl and Triazole Moieties: A New Recovery Strategy for TEMPO. Org. Lett. 2008, 10, 4171–4174. 10.1021/ol801555f. PubMed DOI

Zhang X.; Dong W.; Luan Y.; Yang M.; Tan L.; Guo Y.; Gao H.; Tang Y.; Dang R.; Li J.; Wang G. Highly Efficient Sulfonated-Polystyrene–Cu(II)@Cu3(BTC)2 Core-Shell Microsphere Catalysts for Base-Free Aerobic Oxidation of Alcohols. J. Mater. Chem. A 2015, 3, 4266–4273. 10.1039/C4TA06046F. DOI

Kumpulainen E. T.; Koskinen A. M. Catalytic Activity Dependency on Catalyst Components in Aerobic Copper–TEMPO Oxidation. Chem. - Eur. J. 2009, 15, 10901–10911. 10.1002/chem.200901245. PubMed DOI

Tu B.; Pang Q.; Xu H.; Li X.; Wang Y.; Ma Z.; Weng L.; Li Q. Reversible Redox Activity in Multicomponent Metal–Organic Frameworks Constructed from Trinuclear Copper Pyrazolate Building Blocks. J. Am. Chem. Soc. 2017, 139, 7998–8007. 10.1021/jacs.7b03578. PubMed DOI

McGuirk C. M.; Katz M. J.; Stern C. L.; Sarjeant A. A.; Hupp J. T.; Farha O. K.; Mirkin C. A. Turning on Catalysis: Incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr MetalOrganic Framework. J. Am. Chem. Soc. 2015, 137, 919–925. 10.1021/ja511403t. PubMed DOI

Možina S.; Iskra J. Aerobic Oxidation of Secondary Alcohols with Nitric Acid and Iron (III) Chloride as Catalysts in Fluorinated Alcohol. J. Org. Chem. 2019, 84, 14579–14586. 10.1021/acs.joc.9b02109. PubMed DOI

Shokouhimehr M.; Mahmoudi Gom-Yek S.; Nasrollahzadeh M.; Kim A.; Varma R. S. Palladium Nanocatalysts on Hydroxyapatite: Green Oxidation of Alcohols and Reduction of Nitroarenes in Water. Appl. Sci. 2019, 9, 4183.10.3390/app9194183. DOI

Ahadi A.; Alamgholiloo H.; Rostamnia S.; Liu Z.; Shokouhimehr M.; Alonso D. A.; Luque R. Layer-wise Titania Growth within Dimeric Organic Functional Group Viologenperiodic Mesoporous Organosilica as Efficient Photocatalyst for Oxidative Formic Acid Decomposition. ChemCatChem 2019, 11, 4803.10.1002/cctc.201900486. DOI

Zhang K.; Lee T. H.; Noh H.; Farha O. K.; Jang H. W.; Choi J. W.; Shokouhimehr M. Tailorable Topologies for Selectively Controlling Crystals of Expanded Prussian Blue Analogs. Cryst. Growth Des. 2019, 19, 7385–7395. 10.1021/acs.cgd.9b01309. DOI

Li L.; Liu X. L.; Gao M.; Hong W.; Liu G. Z.; Fan L.; Hu B.; Xia Q. H.; Liu L.; Song G. W.; Xu Z. S. The Adsorption on Magnetic Hybrid Fe3O4/HKUST-1/GO of Methylene Blue from Water Solution. J. Mater. Chem. A 2014, 2, 1795–1801. 10.1039/C3TA14225F. DOI

Zhang Y.; Li G.; Lu H.; Lv Q.; Sun Z. Synthesis, Characterization and Photocatalytic Properties of MIL-53(Fe)–Graphene Hybrid Materials. RSC Adv. 2014, 4, 7594–7600. 10.1039/c3ra46706f. DOI

Wu Y.; Luo H.; Wang H. Synthesis of Iron (III)-Based Metal–Organic Framework/Graphene Oxide Composites with Increased Photocatalytic Performance for Dye Degradation. RSC Adv. 2014, 4, 40435–40438. 10.1039/C4RA07566H. DOI

Petit C.; Bandosz T. J. MOF–Graphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal–Organic Frameworks. Adv. Mater. 2009, 21, 4753–4757. 10.1002/adma.200901581. DOI

Petit C.; Bandosz T. J. MOF–Graphite Oxide Nanocomposites: Surface Characterization and Evaluation as Adsorbents of Ammonia. J. Mater. Chem. 2009, 19, 6521–6528. 10.1039/b908862h. DOI

Cai J.; Lu J.-Y.; Chen Q.-Y.; Qu L.-L.; Lu Y.-Q.; Gao G.-F. Eu-Based MOF/Graphene Oxide Composite: A Novel Photocatalyst for the Oxidation of Benzyl Alcohol Using Water as Oxygen Source. New J. Chem. 2017, 41, 3882–3886. 10.1039/C7NJ00501F. DOI

Rostamnia S.; Doustkhah E.; Karimi Z.; Amini S.; Luque R. Surfactant-Exfoliated Highly Dispersive Pd-Supported Graphene Oxide Nanocomposite as a Catalyst for Aerobic Aqueous Oxidations of Alcohols. ChemCatChem 2015, 7, 1678–1683. 10.1002/cctc.201500126. DOI

Rostamnia S.; Doustkhah E.; Zeynizadeh B. Exfoliation Effect of PEG-Type Surfactant on Pd Supported GO (SE-Pd (nanoparticle)/GO) in Cascade Synthesis of Amides: A Comparison with Pd (nanoparticle)/rGO. J. Mol. Catal. A: Chem. 2016, 416, 88–95. 10.1016/j.molcata.2016.02.024. DOI

Rostamnia S.; Zeynizadeh B.; Doustkhah E.; Hosseini H. G. Exfoliated Pd Decorated Graphene Oxide Nanosheets (PdNP–GO/P123): Non-Toxic, Ligandless and Recyclable in Greener Hiyama Cross-Coupling Reaction. J. Colloid Interface Sci. 2015, 451, 46–52. 10.1016/j.jcis.2015.03.040. PubMed DOI

Gawande M. B.; Branco P. S.; Varma R. S. Nano-Magnetite (Fe3O4) as A Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393. 10.1039/c3cs35480f. PubMed DOI

Shokouhimehr M. Magnetically Separable and Sustainable Nanostructured Catalysts for Heterogeneous Reduction of Nitroaromatics. Catalysts 2015, 5, 534–560. 10.3390/catal5020534. DOI

Nasir Baig R. B.; Varma R. S. Organic Synthesis via Magnetic Attraction: Benign and Sustainable Protocols Using Magnetic Nanoferrites. Green Chem. 2013, 15, 398–417. 10.1039/C2GC36455G. DOI

Rong M.; Lin L.; Song X.; Zhao T.; Zhong Y.; Yan J.; Wang Y.; Chen X. A Label-Free Fluorescence Sensing Approach for Selective and Sensitive Detection of 2,4,6-Trinitrophenol (TNP) in Aqueous Solution Using Graphitic Carbon Nitride Nanosheets. Anal. Chem. 2015, 87, 1288–1296. 10.1021/ac5039913. PubMed DOI

Chen X. Y.; Chen C.; Zhang Z. J.; Xie D. H. Gelatin-Derived Nitrogen-Doped Porous Carbon via A Dual-Template Carbonization Method for High Performance Supercapacitors. J. Mater. Chem. A 2013, 1, 10903–10911. 10.1039/c3ta12328f. DOI

Li Z.; Xia H.; Li S.; Pang J.; Zhu W.; Jiang Y. In situ Hybridization of Enzymes and their Metal-Organic Framework Analogues with Enhanced Activity and Stability by Biomimetic Mineralisation. Nanoscale 2017, 9, 15298–15302. 10.1039/C7NR06315F. PubMed DOI

Wu L.; Yang C.; Lv Z.; Cui F.; Zhao L.; Yang P. Facile One-Pot Synthesis of Different Surfactant-Functionalized Water-Soluble Fe3O4 Nanoparticles as Magnetic Resonance Imaging Contrast Agents for Melanoma Tumors. RSC Adv. 2015, 5, 50557–50564. 10.1039/C4RA05786D. DOI

Rodenas T.; Luz I.; Prieto G.; Seoane B.; Miro H.; Corma A.; Kapteijn F.; i Xamena F. X. L.; Gascon J. Metal-Organic Framework Nanosheets in Polymer Composite Materials for Gas Separation. Nat. Mater. 2015, 14, 48–73. 10.1038/nmat4113. PubMed DOI PMC

Shete M.; Kumar P.; Bachman J. E.; Ma X.; Smith Z. P.; Xu W.; Mkhoyan K. A.; Long J. R.; Tsapatsis M. On the Direct Synthesis of Cu (BDC) MOF Nanosheets and their Performance in Mixed Matrix Membranes. J. Membr. Sci. 2018, 549, 312–320. 10.1016/j.memsci.2017.12.002. DOI

Rostamnia S.; Alamgholiloo H.; Liu X. Pd-Grafted Open Metal Site Copper-Benzene-1,4-Dicarboxylate Metal Organic Frameworks (Cu-BDC MOF’s) as Promising Interfacial Catalysts for Sustainable Suzuki Coupling. J. Colloid Interface Sci. 2016, 469, 310–317. 10.1016/j.jcis.2016.02.021. PubMed DOI

Buso D.; Nairn K. M.; Gimona M.; Hill A. J.; Falcaro P. Fast Synthesis of MOF-5 Microcrystals Using Sol–Gel SiO2 Nanoparticles. Chem. Mater. 2011, 23, 929–934. 10.1021/cm101519s. DOI

Buso D.; Hill A. J.; Colson T.; Whitfield H. J.; Patelli A.; Scopece P.; Doherty C. M.; Falcaro P. Complete Characterization of α-Hopeite Microparticles: An Ideal Nucleation Seed for Metal Organic Frameworks. Cryst. Growth Des. 2011, 11, 5268–5274. 10.1021/cg200717a. DOI

Sugikawa K.; Nagata S.; Furukawa Y.; Kokado K.; Sada K. Stable and Functional Gold Nanorod Composites with A Metal-Organic Framework Crystalline Shell. Chem. Mater. 2013, 25, 2565–2570. 10.1021/cm302735b. DOI

Yang T.; Shen C.; Li Z.; Zhang H.; Xiao C.; Chen S.; Xu Z.; Shi D.; Li J.; Gao H. Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties. J. Phys. Chem. B 2005, 109, 23233–23236. 10.1021/jp054291f. PubMed DOI

Liu Z.; Liu Y.; Yao K.; Ding Z.; Tao J.; Wang X. Synthesis and Magnetic Properties of Fe3O4 Nanoparticles. J. Mater. Synth. Process. 2002, 10, 83–87. 10.1023/A:1021231527095. DOI

Layek K.; Maheswaran H.; Arundhathi R.; Kantam M. L.; Bhargava S. K. Nanocrystalline Magnesium Oxide Stabilized Palladium (0): An Efficient Reusable Catalyst for Room Temperature Selective Aerobic Oxidation of Alcohols. Adv. Synth. Catal. 2011, 353, 606–616. 10.1002/adsc.201000591. DOI

Miyamura H.; Matsubara R.; Miyazaki Y.; Kobayashi S. Aerobic Oxidation of Alcohols at Room Temperature and Atmospheric Conditions Catalyzed by Reusable Gold Nanoclusters Stabilized by the Benzene Rings of Polystyrene Derivatives. Angew. Chem., Int. Ed. 2007, 46, 4151–4154. 10.1002/anie.200700080. PubMed DOI

Chen J.; Zhang Q.; Wang Y.; Wan H. Size-Dependent Catalytic Activity of Supported Palladium Nanoparticles for Aerobic Oxidation of Alcohols. Adv. Synth. Catal. 2008, 350, 453–464. 10.1002/adsc.200700350. DOI

Wu H.; Zhang Q.; Wang Y. Solvent-Free Aerobic Oxidation of Alcohols Catalyzed by an Efficient and Recyclable Palladium Heterogeneous Catalyst. Adv. Synth. Catal. 2005, 347, 1356–1360. 10.1002/adsc.200505081. DOI

Choi K.-M.; Akita T.; Mizugaki T.; Ebitani K.; Kaneda K. Highly Selective Oxidation of Allylic Alcohols Catalysed by Monodispersed 8-Shell Pd Nanoclusters in the Presence of Molecular Oxygen. New J. Chem. 2003, 27, 324–328. 10.1039/b207098g. DOI

Chen G.-J.; Wang J.-S.; Jin F.-Z.; Liu M.-Y.; Zhao C.-W.; Li Y.-A.; Dong Y.-B. Pd@Cu(II)-MOF-Catalyzed Aerobic Oxidation of Benzylic Alcohols in Air with High Conversion and Selectivity. Inorg. Chem. 2016, 55, 3058–3064. 10.1021/acs.inorgchem.5b02973. PubMed DOI

Chen Y.; Zheng H.; Guo Z.; Zhou C.; Wang C.; Borgna A.; Yang Y. Pd Catalysts Supported on MnCeOx Mixed Oxides and their Catalytic Application in Solvent-Free Aerobic Oxidation of Benzyl Alcohol: Support Composition and Structure Sensitivity. J. Catal. 2011, 283, 34–44. 10.1016/j.jcat.2011.06.021. DOI

Dimitratos N.; Villa A.; Wang D.; Porta F.; Su D.; Prati L. Pd and Pt Catalysts Modified by Alloying with Au in the Selective Oxidation of Alcohols. J. Catal. 2006, 244, 113–121. 10.1016/j.jcat.2006.08.019. DOI

Proch S.; Herrmannsdörfer J.; Kempe R.; Kern C.; Jess A.; Seyfarth L.; Senker J. Pt@MOF-177: Synthesis, Room-Temperature Hydrogen Storage and Oxidation Catalysis. Chem. - Eur. J. 2008, 14, 8204–8212. 10.1002/chem.200801043. PubMed DOI

Dimitratos N.; Lopez-Sanchez J. A.; Morgan D.; Carley A.; Prati L.; Hutchings G. J. Solvent Free Liquid Phase Oxidation of Benzyl Alcohol Using Au Supported Catalysts Prepared Using A Sol Immobilization Technique. Catal. Today 2007, 122, 317–324. 10.1016/j.cattod.2007.01.002. DOI

Mitsudome T.; Noujima A.; Mizugaki T.; Jitsukawa K.; Kaneda K. Efficient Aerobic Oxidation of Alcohols Using A Hydrotalcite-Supported Gold Nanoparticle Catalyst. Adv. Synth. Catal. 2009, 351, 1890–1896. 10.1002/adsc.200900239. DOI

Yamaguchi K.; Mizuno N. Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angew. Chem., Int. Ed. 2002, 41, 4538–4542. 10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6. PubMed DOI

Carson F.; Agrawal S.; Gustafsson M.; Bartoszewicz A.; Moraga F.; Zou X.; Martín-Matute B. Ruthenium Complexation in An Aluminium Metal-Organic Framework and its Application in Alcohol Oxidation Catalysis. Chem. - Eur. J. 2012, 18, 15337–15344. 10.1002/chem.201200885. PubMed DOI

Tang Q.; Huang X.; Wu C.; Zhao P.; Chen Y.; Yang Y. Structure and Catalytic Properties of K-Doped Manganese Oxide Supported on Alumina. J. Mol. Catal. A: Chem. 2009, 306, 48–53. 10.1016/j.molcata.2009.02.020. DOI

Wang F.; Ueda W. Aerobic Oxidation of Alcohols over Novel Crystalline MoVO Oxide. Appl. Catal., A 2008, 346, 155–163. 10.1016/j.apcata.2008.05.021. DOI

Kim B. R.; Oh J. S.; Kim J.; Lee C. Y. Aerobic Oxidation of Alcohols over Copper-containing Metal-Organic Frameworks. Bull. Korean Chem. Soc. 2015, 36, 2799–2800. 10.1002/bkcs.10599. DOI

Hou J.; Luan Y.; Tang J.; Wensley A. M.; Yang M.; Lu Y. Synthesis of UiO-66-NH2 Derived Heterogeneous Copper (II) Catalyst and Study of its Application in the Selective Aerobic Oxidation of Alcohols. J. Mol. Catal. A Chem. 2015, 407, 53–59. 10.1016/j.molcata.2015.06.018. DOI

Hoover J. M.; Ryland B. L.; Stahl S. S. Mechanism of Copper (I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation. J. Am. Chem. Soc. 2013, 135, 2357–2367. 10.1021/ja3117203. PubMed DOI PMC

Hoover J. M.; Stahl S. S. Highly Practical Copper (I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols. J. Am. Chem. Soc. 2011, 133, 16901–16910. 10.1021/ja206230h. PubMed DOI PMC

Hoover J. M.; Steves J. E.; Stahl S. S. Copper(I)/TEMPO-Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air. Nat. Protoc. 2012, 7, 1161.10.1038/nprot.2012.057. PubMed DOI PMC

Hoover J. M.; Ryland B. L.; Stahl S. S. Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems. ACS Catal. 2013, 3, 2599–2605. 10.1021/cs400689a. PubMed DOI PMC

Deng Y.; Qi D.; Deng C.; Zhang X.; Zhao D. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. J. Am. Chem. Soc. 2008, 130, 28–29. 10.1021/ja0777584. PubMed DOI

Carson C. G.; Hardcastle K.; Schwartz J.; Liu X.; Hoffmann C.; Gerhardt R. A.; Tannenbaum R. Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks. Eur. J. Inorg. Chem. 2009, 2009, 2338–2343. 10.1002/ejic.200801224. DOI

Hummers W. S. J.; Offeman R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339.10.1021/ja01539a017. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Developments and applications of nanomaterial-based carbon paste electrodes

. 2020 Jun 02 ; 10 (36) : 21561-21581. [epub] 20200604

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...