Boosting Aerobic Oxidation of Alcohols via Synergistic Effect between TEMPO and a Composite Fe3O4/Cu-BDC/GO Nanocatalyst
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32201806
PubMed Central
PMC7081426
DOI
10.1021/acsomega.9b04209
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Fabrication of a nanocomposite catalyst via a novel and efficient strategy remains a challenge; Fe3O4 nanoparticles anchored on graphene oxide (GO) sheet-supported metal-organic frameworks (MOFs). In this study, the physicochemical properties of the ensuing Fe3O4/Cu-BDC/GO are investigated using Fourier transform infrared spectrum, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray detector, and atomic absorption spectroscopy. The salient features of the nanocomposite such as Cu-MOF, synergistic effect with GO sheets, and magnetic separation characteristics make it an excellent ternary heterostructure for aerobic oxidation of alcohols. The proposed nanocatalyst and co-catalyst 2,2,6,6-tetramethylpiperidine-N-oxyl substantially enhance the catalytic performance for the aerobic oxidation under very mild and sustainable reaction conditions. The heterogeneity of Fe3O4/Cu-BDC/GO composite catalyst is affirmed with the added advantage that the initial activity is well maintained even after seven cycles.
Zobrazit více v PubMed
Zhang K.; Suh J. M.; Choi J. W.; Jang H. W.; Shokouhimehr M.; Varma R. S. Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water. ACS Omega 2019, 4, 483–495. 10.1021/acsomega.8b03051. PubMed DOI PMC
Zhuang J. L.; Liu X. Y.; Zhang Y.; Wang C.; Mao H. L.; Guo J.; Terfort A. Zr-Metal–Organic Frameworks Featuring TEMPO Radicals: Synergistic Effect between TEMPO and Hydrophilic Zr-Node Defects Boosting Aerobic Oxidation of Alcohols. ACS Appl. Mater. Interfaces 2019, 11, 3034–3043. 10.1021/acsami.8b18370. PubMed DOI
Wertz S.; Studer A. Nitroxide-Catalyzed Transition-Metal-Free Aerobic Oxidation Processes. Green Chem. 2013, 15, 3116–3134. 10.1039/c3gc41459k. DOI
Ryland B. L.; Stahl S. S. Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Copper/TEMPO and Related Catalyst Systems. Angew. Chem., Int. Ed. 2014, 53, 8824–8838. 10.1002/anie.201403110. PubMed DOI PMC
Karimi B.; Biglari A.; Clark J. H.; Budarin V. Green, Transition-Metal-Free Aerobic Oxidation of Alcohols Using a Highly Durable Supported Organocatalyst. Angew. Chem., Int. Ed. 2007, 46, 7210–7213. 10.1002/anie.200701918. PubMed DOI
Karimi B.; Rafiee M.; Alizadeh S.; Vali H. Eco-Friendly Electrocatalytic Oxidation of Alcohols on a Novel Electro Generated TEMPO-Functionalized MCM-41 Modified Electrode. Green Chem. 2015, 17, 991–1000. 10.1039/C4GC01303D. DOI
Karimi B.; Vahdati S.; Vali H. Synergistic Catalysis within TEMPO-Functionalized Periodic Mesoporous Organosilica with Bridge Imidazolium Groups in the Aerobic Oxidation of Alcohols. RSC Adv. 2016, 6, 63717–63723. 10.1039/C6RA15483B. DOI
Gheorghe A.; Chinnusamy T.; Cuevas-Yañez E.; Hilgers P.; Reiser O. Combination of Perfluoroalkyl and Triazole Moieties: A New Recovery Strategy for TEMPO. Org. Lett. 2008, 10, 4171–4174. 10.1021/ol801555f. PubMed DOI
Zhang X.; Dong W.; Luan Y.; Yang M.; Tan L.; Guo Y.; Gao H.; Tang Y.; Dang R.; Li J.; Wang G. Highly Efficient Sulfonated-Polystyrene–Cu(II)@Cu3(BTC)2 Core-Shell Microsphere Catalysts for Base-Free Aerobic Oxidation of Alcohols. J. Mater. Chem. A 2015, 3, 4266–4273. 10.1039/C4TA06046F. DOI
Kumpulainen E. T.; Koskinen A. M. Catalytic Activity Dependency on Catalyst Components in Aerobic Copper–TEMPO Oxidation. Chem. - Eur. J. 2009, 15, 10901–10911. 10.1002/chem.200901245. PubMed DOI
Tu B.; Pang Q.; Xu H.; Li X.; Wang Y.; Ma Z.; Weng L.; Li Q. Reversible Redox Activity in Multicomponent Metal–Organic Frameworks Constructed from Trinuclear Copper Pyrazolate Building Blocks. J. Am. Chem. Soc. 2017, 139, 7998–8007. 10.1021/jacs.7b03578. PubMed DOI
McGuirk C. M.; Katz M. J.; Stern C. L.; Sarjeant A. A.; Hupp J. T.; Farha O. K.; Mirkin C. A. Turning on Catalysis: Incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr MetalOrganic Framework. J. Am. Chem. Soc. 2015, 137, 919–925. 10.1021/ja511403t. PubMed DOI
Možina S.; Iskra J. Aerobic Oxidation of Secondary Alcohols with Nitric Acid and Iron (III) Chloride as Catalysts in Fluorinated Alcohol. J. Org. Chem. 2019, 84, 14579–14586. 10.1021/acs.joc.9b02109. PubMed DOI
Shokouhimehr M.; Mahmoudi Gom-Yek S.; Nasrollahzadeh M.; Kim A.; Varma R. S. Palladium Nanocatalysts on Hydroxyapatite: Green Oxidation of Alcohols and Reduction of Nitroarenes in Water. Appl. Sci. 2019, 9, 4183.10.3390/app9194183. DOI
Ahadi A.; Alamgholiloo H.; Rostamnia S.; Liu Z.; Shokouhimehr M.; Alonso D. A.; Luque R. Layer-wise Titania Growth within Dimeric Organic Functional Group Viologenperiodic Mesoporous Organosilica as Efficient Photocatalyst for Oxidative Formic Acid Decomposition. ChemCatChem 2019, 11, 4803.10.1002/cctc.201900486. DOI
Zhang K.; Lee T. H.; Noh H.; Farha O. K.; Jang H. W.; Choi J. W.; Shokouhimehr M. Tailorable Topologies for Selectively Controlling Crystals of Expanded Prussian Blue Analogs. Cryst. Growth Des. 2019, 19, 7385–7395. 10.1021/acs.cgd.9b01309. DOI
Li L.; Liu X. L.; Gao M.; Hong W.; Liu G. Z.; Fan L.; Hu B.; Xia Q. H.; Liu L.; Song G. W.; Xu Z. S. The Adsorption on Magnetic Hybrid Fe3O4/HKUST-1/GO of Methylene Blue from Water Solution. J. Mater. Chem. A 2014, 2, 1795–1801. 10.1039/C3TA14225F. DOI
Zhang Y.; Li G.; Lu H.; Lv Q.; Sun Z. Synthesis, Characterization and Photocatalytic Properties of MIL-53(Fe)–Graphene Hybrid Materials. RSC Adv. 2014, 4, 7594–7600. 10.1039/c3ra46706f. DOI
Wu Y.; Luo H.; Wang H. Synthesis of Iron (III)-Based Metal–Organic Framework/Graphene Oxide Composites with Increased Photocatalytic Performance for Dye Degradation. RSC Adv. 2014, 4, 40435–40438. 10.1039/C4RA07566H. DOI
Petit C.; Bandosz T. J. MOF–Graphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal–Organic Frameworks. Adv. Mater. 2009, 21, 4753–4757. 10.1002/adma.200901581. DOI
Petit C.; Bandosz T. J. MOF–Graphite Oxide Nanocomposites: Surface Characterization and Evaluation as Adsorbents of Ammonia. J. Mater. Chem. 2009, 19, 6521–6528. 10.1039/b908862h. DOI
Cai J.; Lu J.-Y.; Chen Q.-Y.; Qu L.-L.; Lu Y.-Q.; Gao G.-F. Eu-Based MOF/Graphene Oxide Composite: A Novel Photocatalyst for the Oxidation of Benzyl Alcohol Using Water as Oxygen Source. New J. Chem. 2017, 41, 3882–3886. 10.1039/C7NJ00501F. DOI
Rostamnia S.; Doustkhah E.; Karimi Z.; Amini S.; Luque R. Surfactant-Exfoliated Highly Dispersive Pd-Supported Graphene Oxide Nanocomposite as a Catalyst for Aerobic Aqueous Oxidations of Alcohols. ChemCatChem 2015, 7, 1678–1683. 10.1002/cctc.201500126. DOI
Rostamnia S.; Doustkhah E.; Zeynizadeh B. Exfoliation Effect of PEG-Type Surfactant on Pd Supported GO (SE-Pd (nanoparticle)/GO) in Cascade Synthesis of Amides: A Comparison with Pd (nanoparticle)/rGO. J. Mol. Catal. A: Chem. 2016, 416, 88–95. 10.1016/j.molcata.2016.02.024. DOI
Rostamnia S.; Zeynizadeh B.; Doustkhah E.; Hosseini H. G. Exfoliated Pd Decorated Graphene Oxide Nanosheets (PdNP–GO/P123): Non-Toxic, Ligandless and Recyclable in Greener Hiyama Cross-Coupling Reaction. J. Colloid Interface Sci. 2015, 451, 46–52. 10.1016/j.jcis.2015.03.040. PubMed DOI
Gawande M. B.; Branco P. S.; Varma R. S. Nano-Magnetite (Fe3O4) as A Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393. 10.1039/c3cs35480f. PubMed DOI
Shokouhimehr M. Magnetically Separable and Sustainable Nanostructured Catalysts for Heterogeneous Reduction of Nitroaromatics. Catalysts 2015, 5, 534–560. 10.3390/catal5020534. DOI
Nasir Baig R. B.; Varma R. S. Organic Synthesis via Magnetic Attraction: Benign and Sustainable Protocols Using Magnetic Nanoferrites. Green Chem. 2013, 15, 398–417. 10.1039/C2GC36455G. DOI
Rong M.; Lin L.; Song X.; Zhao T.; Zhong Y.; Yan J.; Wang Y.; Chen X. A Label-Free Fluorescence Sensing Approach for Selective and Sensitive Detection of 2,4,6-Trinitrophenol (TNP) in Aqueous Solution Using Graphitic Carbon Nitride Nanosheets. Anal. Chem. 2015, 87, 1288–1296. 10.1021/ac5039913. PubMed DOI
Chen X. Y.; Chen C.; Zhang Z. J.; Xie D. H. Gelatin-Derived Nitrogen-Doped Porous Carbon via A Dual-Template Carbonization Method for High Performance Supercapacitors. J. Mater. Chem. A 2013, 1, 10903–10911. 10.1039/c3ta12328f. DOI
Li Z.; Xia H.; Li S.; Pang J.; Zhu W.; Jiang Y. In situ Hybridization of Enzymes and their Metal-Organic Framework Analogues with Enhanced Activity and Stability by Biomimetic Mineralisation. Nanoscale 2017, 9, 15298–15302. 10.1039/C7NR06315F. PubMed DOI
Wu L.; Yang C.; Lv Z.; Cui F.; Zhao L.; Yang P. Facile One-Pot Synthesis of Different Surfactant-Functionalized Water-Soluble Fe3O4 Nanoparticles as Magnetic Resonance Imaging Contrast Agents for Melanoma Tumors. RSC Adv. 2015, 5, 50557–50564. 10.1039/C4RA05786D. DOI
Rodenas T.; Luz I.; Prieto G.; Seoane B.; Miro H.; Corma A.; Kapteijn F.; i Xamena F. X. L.; Gascon J. Metal-Organic Framework Nanosheets in Polymer Composite Materials for Gas Separation. Nat. Mater. 2015, 14, 48–73. 10.1038/nmat4113. PubMed DOI PMC
Shete M.; Kumar P.; Bachman J. E.; Ma X.; Smith Z. P.; Xu W.; Mkhoyan K. A.; Long J. R.; Tsapatsis M. On the Direct Synthesis of Cu (BDC) MOF Nanosheets and their Performance in Mixed Matrix Membranes. J. Membr. Sci. 2018, 549, 312–320. 10.1016/j.memsci.2017.12.002. DOI
Rostamnia S.; Alamgholiloo H.; Liu X. Pd-Grafted Open Metal Site Copper-Benzene-1,4-Dicarboxylate Metal Organic Frameworks (Cu-BDC MOF’s) as Promising Interfacial Catalysts for Sustainable Suzuki Coupling. J. Colloid Interface Sci. 2016, 469, 310–317. 10.1016/j.jcis.2016.02.021. PubMed DOI
Buso D.; Nairn K. M.; Gimona M.; Hill A. J.; Falcaro P. Fast Synthesis of MOF-5 Microcrystals Using Sol–Gel SiO2 Nanoparticles. Chem. Mater. 2011, 23, 929–934. 10.1021/cm101519s. DOI
Buso D.; Hill A. J.; Colson T.; Whitfield H. J.; Patelli A.; Scopece P.; Doherty C. M.; Falcaro P. Complete Characterization of α-Hopeite Microparticles: An Ideal Nucleation Seed for Metal Organic Frameworks. Cryst. Growth Des. 2011, 11, 5268–5274. 10.1021/cg200717a. DOI
Sugikawa K.; Nagata S.; Furukawa Y.; Kokado K.; Sada K. Stable and Functional Gold Nanorod Composites with A Metal-Organic Framework Crystalline Shell. Chem. Mater. 2013, 25, 2565–2570. 10.1021/cm302735b. DOI
Yang T.; Shen C.; Li Z.; Zhang H.; Xiao C.; Chen S.; Xu Z.; Shi D.; Li J.; Gao H. Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties. J. Phys. Chem. B 2005, 109, 23233–23236. 10.1021/jp054291f. PubMed DOI
Liu Z.; Liu Y.; Yao K.; Ding Z.; Tao J.; Wang X. Synthesis and Magnetic Properties of Fe3O4 Nanoparticles. J. Mater. Synth. Process. 2002, 10, 83–87. 10.1023/A:1021231527095. DOI
Layek K.; Maheswaran H.; Arundhathi R.; Kantam M. L.; Bhargava S. K. Nanocrystalline Magnesium Oxide Stabilized Palladium (0): An Efficient Reusable Catalyst for Room Temperature Selective Aerobic Oxidation of Alcohols. Adv. Synth. Catal. 2011, 353, 606–616. 10.1002/adsc.201000591. DOI
Miyamura H.; Matsubara R.; Miyazaki Y.; Kobayashi S. Aerobic Oxidation of Alcohols at Room Temperature and Atmospheric Conditions Catalyzed by Reusable Gold Nanoclusters Stabilized by the Benzene Rings of Polystyrene Derivatives. Angew. Chem., Int. Ed. 2007, 46, 4151–4154. 10.1002/anie.200700080. PubMed DOI
Chen J.; Zhang Q.; Wang Y.; Wan H. Size-Dependent Catalytic Activity of Supported Palladium Nanoparticles for Aerobic Oxidation of Alcohols. Adv. Synth. Catal. 2008, 350, 453–464. 10.1002/adsc.200700350. DOI
Wu H.; Zhang Q.; Wang Y. Solvent-Free Aerobic Oxidation of Alcohols Catalyzed by an Efficient and Recyclable Palladium Heterogeneous Catalyst. Adv. Synth. Catal. 2005, 347, 1356–1360. 10.1002/adsc.200505081. DOI
Choi K.-M.; Akita T.; Mizugaki T.; Ebitani K.; Kaneda K. Highly Selective Oxidation of Allylic Alcohols Catalysed by Monodispersed 8-Shell Pd Nanoclusters in the Presence of Molecular Oxygen. New J. Chem. 2003, 27, 324–328. 10.1039/b207098g. DOI
Chen G.-J.; Wang J.-S.; Jin F.-Z.; Liu M.-Y.; Zhao C.-W.; Li Y.-A.; Dong Y.-B. Pd@Cu(II)-MOF-Catalyzed Aerobic Oxidation of Benzylic Alcohols in Air with High Conversion and Selectivity. Inorg. Chem. 2016, 55, 3058–3064. 10.1021/acs.inorgchem.5b02973. PubMed DOI
Chen Y.; Zheng H.; Guo Z.; Zhou C.; Wang C.; Borgna A.; Yang Y. Pd Catalysts Supported on MnCeOx Mixed Oxides and their Catalytic Application in Solvent-Free Aerobic Oxidation of Benzyl Alcohol: Support Composition and Structure Sensitivity. J. Catal. 2011, 283, 34–44. 10.1016/j.jcat.2011.06.021. DOI
Dimitratos N.; Villa A.; Wang D.; Porta F.; Su D.; Prati L. Pd and Pt Catalysts Modified by Alloying with Au in the Selective Oxidation of Alcohols. J. Catal. 2006, 244, 113–121. 10.1016/j.jcat.2006.08.019. DOI
Proch S.; Herrmannsdörfer J.; Kempe R.; Kern C.; Jess A.; Seyfarth L.; Senker J. Pt@MOF-177: Synthesis, Room-Temperature Hydrogen Storage and Oxidation Catalysis. Chem. - Eur. J. 2008, 14, 8204–8212. 10.1002/chem.200801043. PubMed DOI
Dimitratos N.; Lopez-Sanchez J. A.; Morgan D.; Carley A.; Prati L.; Hutchings G. J. Solvent Free Liquid Phase Oxidation of Benzyl Alcohol Using Au Supported Catalysts Prepared Using A Sol Immobilization Technique. Catal. Today 2007, 122, 317–324. 10.1016/j.cattod.2007.01.002. DOI
Mitsudome T.; Noujima A.; Mizugaki T.; Jitsukawa K.; Kaneda K. Efficient Aerobic Oxidation of Alcohols Using A Hydrotalcite-Supported Gold Nanoparticle Catalyst. Adv. Synth. Catal. 2009, 351, 1890–1896. 10.1002/adsc.200900239. DOI
Yamaguchi K.; Mizuno N. Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angew. Chem., Int. Ed. 2002, 41, 4538–4542. 10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6. PubMed DOI
Carson F.; Agrawal S.; Gustafsson M.; Bartoszewicz A.; Moraga F.; Zou X.; Martín-Matute B. Ruthenium Complexation in An Aluminium Metal-Organic Framework and its Application in Alcohol Oxidation Catalysis. Chem. - Eur. J. 2012, 18, 15337–15344. 10.1002/chem.201200885. PubMed DOI
Tang Q.; Huang X.; Wu C.; Zhao P.; Chen Y.; Yang Y. Structure and Catalytic Properties of K-Doped Manganese Oxide Supported on Alumina. J. Mol. Catal. A: Chem. 2009, 306, 48–53. 10.1016/j.molcata.2009.02.020. DOI
Wang F.; Ueda W. Aerobic Oxidation of Alcohols over Novel Crystalline MoVO Oxide. Appl. Catal., A 2008, 346, 155–163. 10.1016/j.apcata.2008.05.021. DOI
Kim B. R.; Oh J. S.; Kim J.; Lee C. Y. Aerobic Oxidation of Alcohols over Copper-containing Metal-Organic Frameworks. Bull. Korean Chem. Soc. 2015, 36, 2799–2800. 10.1002/bkcs.10599. DOI
Hou J.; Luan Y.; Tang J.; Wensley A. M.; Yang M.; Lu Y. Synthesis of UiO-66-NH2 Derived Heterogeneous Copper (II) Catalyst and Study of its Application in the Selective Aerobic Oxidation of Alcohols. J. Mol. Catal. A Chem. 2015, 407, 53–59. 10.1016/j.molcata.2015.06.018. DOI
Hoover J. M.; Ryland B. L.; Stahl S. S. Mechanism of Copper (I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation. J. Am. Chem. Soc. 2013, 135, 2357–2367. 10.1021/ja3117203. PubMed DOI PMC
Hoover J. M.; Stahl S. S. Highly Practical Copper (I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols. J. Am. Chem. Soc. 2011, 133, 16901–16910. 10.1021/ja206230h. PubMed DOI PMC
Hoover J. M.; Steves J. E.; Stahl S. S. Copper(I)/TEMPO-Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air. Nat. Protoc. 2012, 7, 1161.10.1038/nprot.2012.057. PubMed DOI PMC
Hoover J. M.; Ryland B. L.; Stahl S. S. Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems. ACS Catal. 2013, 3, 2599–2605. 10.1021/cs400689a. PubMed DOI PMC
Deng Y.; Qi D.; Deng C.; Zhang X.; Zhao D. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. J. Am. Chem. Soc. 2008, 130, 28–29. 10.1021/ja0777584. PubMed DOI
Carson C. G.; Hardcastle K.; Schwartz J.; Liu X.; Hoffmann C.; Gerhardt R. A.; Tannenbaum R. Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks. Eur. J. Inorg. Chem. 2009, 2009, 2338–2343. 10.1002/ejic.200801224. DOI
Hummers W. S. J.; Offeman R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339.10.1021/ja01539a017. DOI