A Comparison of Drug Transport in Pulmonary Absorption Models: Isolated Perfused rat Lungs, Respiratory Epithelial Cell Lines and Primary Cell Culture
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
28924829
PubMed Central
PMC5736767
DOI
10.1007/s11095-017-2251-y
PII: 10.1007/s11095-017-2251-y
Knihovny.cz E-zdroje
- Klíčová slova
- 16HBE14o-, NHBE, biopharmaceutics, calu-3, inhalation, isolated perfused lungs (IPL), permeability, pulmonary,
- MeSH
- absorpce v dýchacích cestách * MeSH
- biologické modely MeSH
- buněčné linie MeSH
- kultivované buňky MeSH
- lidé MeSH
- plíce metabolismus MeSH
- pneumocyty metabolismus MeSH
- potkani Wistar MeSH
- primární buněčná kultura MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
PURPOSE: To evaluate the ability of human airway epithelial cell layers and a simple rat isolated perfused lung (IPL) model to predict pulmonary drug absorption in rats in vivo. METHOD: The permeability of seven compounds selected to possess a range of lipophilicity was measured in two airway cell lines (Calu-3 and 16HBE14o-), in normal human bronchial epithelial (NHBE) cells and using a simple isolated perfused lungs (IPL) technique. Data from the cell layers and ex vivo lungs were compared to published absorption rates from rat lungs measured in vivo. RESULTS: A strong relationship was observed between the logarithm of the in vivo absorption half-life and the absorption half-life in the IPL (r = 0.97; excluding formoterol). Good log-linear relationships were also found between the apparent first-order absorption rate in vivo and cell layer permeability with correlation coefficients of 0.92, 0.93, 0.91 in Calu-3, 16HBE14o- and NHBE cells, respectively. CONCLUSION: The simple IPL technique provided a good prediction of drug absorption from the lungs, making it a useful method for empirical screening of drug absorption in the lungs. Permeability measurements were similar in all the respiratory epithelial cell models evaluated, with Calu-3 having the advantage for routine permeability screening purposes of being readily availability, robust and easy to culture.
Faculty of Pharmacy Charles University Prague Hradec Kralove Czech Republic
Pfizer R and D Sandwich Kent CT13 9NJ UK
School of Pharmacy University of Reading Whiteknights Reading RG6 6AP UK
Zobrazit více v PubMed
Niven R. Modulated drug therapy with inhalation aerosols: revisited. In “Pharmaceutical Inhalation Aerosol Technology” Ed. Hickey AJ Ch 18, pp 551 (2003).
Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition on inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev. 2006;58:1030–1060. doi: 10.1016/j.addr.2006.07.012. PubMed DOI
Bäckman P, Adelmann H, Petersson G, Jones CB. Advances in inhaled technologies: understanding the therapeutic challenge, predicting clinical performance, and designing the optimal inhaled product. Clin Pharmacol Ther. 2014;95:509–520. doi: 10.1038/clpt.2014.27. PubMed DOI
Forbes B, Ehrhardt C. Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm. 2005;60:193–205. doi: 10.1016/j.ejpb.2005.02.010. PubMed DOI
Tronde A, Bosquillon C, Forbes B. The isolated perfused lung for drug absorption studies. In Drug absorption studies: In situ, in vitro and in silico models. (Ed) Ehrhardt C and Kim KJ (2008) pp 135–163.3a.
Hastedt JE, Bäckman P, Clark AR, Doub W, Hickey A, Hochhaus G, et al. Scope and relevance of a pulmonary biopharmaceutical classification system AAPS/FDA/USP workshop march 16-17th. AAPS Open. 2016;2:1–20. doi: 10.1186/s41120-015-0002-x. DOI
Kim KJ, Borok Z, Crandall ED. A useful in vitro model for transport studies of alveolar epithelial barrier. Pharm Res. 2001;18:253–255. doi: 10.1023/A:1011040824988. PubMed DOI
van den Bogaard E, Dailey LA, Tetley TD, Forbes B. Inflammatory response and barrier properties of a new alveolar type 1-like cell line. Pharm Res. 2009;26:1172–1180. doi: 10.1007/s11095-009-9838-x. PubMed DOI
Matthias NR, et al. Respiratory epithelial cell culture models for evaluation of ion and drug transport. Adv Drug Deliv Rev. 1996;22:215–249. doi: 10.1016/S0169-409X(96)00420-6. DOI
Forbes B. Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm Sci Technol Today. 2000;3:18–27. doi: 10.1016/S1461-5347(99)00231-X. PubMed DOI
Ehrhardt C, Kneuer C, Fiegel J, Hanes J, Schaefer UF, Kim K-J, Lehr C-M. Influence of apical fluid volume on the development of functional intercellular junctions in human epithelial cell line16HBE14o−: implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell Tissue Res. 2002;308:391–400. doi: 10.1007/s00441-002-0548-5. PubMed DOI
Forbes B, Shah A, Martin GP, Lansley AB. The human bronchial epithelial cell line 16HBE140- as a model system of the airways for studying drug transport. Int J Pharm. 2003;257:161–167. doi: 10.1016/S0378-5173(03)00129-7. PubMed DOI
Borchard G. Calu-3 cells, a valid model for the airway epithelium? STP Pharma Sci. 2002;12:205–211.
Foster KA, Avery ML, Yazdanian M, Audus KL. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int J Pharm. 2000;208:1–11. doi: 10.1016/S0378-5173(00)00452-X. PubMed DOI
Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B. Culture of Calu-3 cells at the air-interface provides a representative model of the airway epithelial barrier. Pharm Res. 2006;23:1482–1490. doi: 10.1007/s11095-006-0255-0. PubMed DOI
Mathias NR, Timoszyk J, Stetsko PI, Megill JR, Smith RL, Wall DA. Permeabilitycharacteristics of Calu-3 human bronchial epithelial cells: in vitro/in vivo correlation to predict lung absorption in rats. J Drug Target. 2002;10:31–40. doi: 10.1080/10611860290007504. PubMed DOI
Manford F, Tronde A, Jeppsson A-B, Patel N, Johansson F, Forbes B. Drug permeability in 16HBE14o- airways cell layers correlates with absorption from the isolated perfused rat lung. Eur J Pharm Sci. 2005;26:414–420. doi: 10.1016/j.ejps.2005.07.010. PubMed DOI
Tronde A, Krondahl E, von Euler-Chelpin H, Brunmark P, Bengtsson UH, Ekström G, Lennernas H. High airway-to-blood transport of an opioid tetrapeptide in the isolated rat lung after aerosol delivery. Peptides. 2002;23:469–478. doi: 10.1016/S0196-9781(01)00624-6. PubMed DOI
Tronde A, Norden B, Jeppson A-B, Brunmark P, Nilsson E, Lennernas H, Bengtsson UH. Drug absorption from the isolated perfused rat lung-correlations with drug physico-chemical properties and epithelial permeability. J Drug Target. 2003;11:61–74. doi: 10.1080/1061186031000086117. PubMed DOI
Lin H, Li H, Cho H-J, Bian S, Roh H-J, Lee M-K, Kim JS, Chung S-J, Shim C-K, Kim D-D. Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci. 2007;96:341–350. doi: 10.1002/jps.20803. PubMed DOI
Madlova M, Bosquillon C, Asker D, Dolezal P, Forbes B. In vitro respiratory drug delivery models possess nominal functional P-glycoprotein activity. J Pharm Pharmacol. 2009;61:293–301. doi: 10.1211/jpp.61.03.0003. PubMed DOI
Tronde A, Norden B, Marchner H, Wendel A-K, Lennernas H, Bengtsson UH. Pulmonary absorption rate and bioavailability of drugs in vivo in rats: structure-absorption relationships and physicochemical profiling of inhaled drugs. J Pharm Sci. 2003;92:1216–1233. doi: 10.1002/jps.10386. PubMed DOI
Morita T, Yamamoto A, Hashida M, Sezaki H. Effects of various absorption promoters on pulmonary absorption of drugs with different molecular weights. Biol Pharm Bull. 1993;16:259–262. doi: 10.1248/bpb.16.259. PubMed DOI
Enna SJ, Schanker LS. Absorption of saccharides and urea from the rat lung. Am J Phys. 1972;222:409–414. doi: 10.1152/ajplegacy.1972.222.2.409. PubMed DOI
Edwards CD, Luscombe C, Eddershaw P, Hessel EM. Development of a novel quantitative structure-activity relationship model to accurately predict pulmonary absorption and replace routine use of the isolated perfused respiring rat lung model. Pharm Res. 2016;33:2604–2616. doi: 10.1007/s11095-016-1983-4. PubMed DOI PMC
Gerde P, Ewing P, Lastbom L, Ryrfeldt A, Waher J, Liden G. A novel method to aerosolize powder for short inhalation exposures at high concentrations: isolated rat lungs exposed to respirable diesel soot. Inhal Toxicol. 2004;16:45–52. doi: 10.1080/08958370490258381. PubMed DOI
Collingwood SP, Coe D, Pryde D, Lock R. Respiratory drug discovery, current developments and future challenges. Highlights from the society of medicines symposium held on June 14th 2012 – Horsham, UK. Drugs Future. 2012;37:619–625. doi: 10.1358/dof.2012.037.08.1854604. DOI
Forbes B. Continuous respiratory epithelial cell culture models: a critical appraisal of their use for biopharmaceutical classification purposes. Respiratory Drug Delivery. 2006;10:229–238.
Horvath G, Schmid N, Fragoso MA, Schmid A, Conner GE, Salathe M, Wanner A. Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway. Am J Respir Cell Mol Biol. 2007;36:53–60. doi: 10.1165/rcmb.2006-0230OC. PubMed DOI PMC
Ehrhardt C, Bäckman P, Couet W, Edwards C, Forbes B, Friden M, Gumbleton M, Hosoya K, Nakanishi T, Takano M, Terasaki T, Yumoto R. Current progress toward a better understanding of drug disposition within the lungs: summary proceedings of the 1st workshop on drug transporters in the lungs. J Pharm Sci. 2017;106:2234–2244. doi: 10.1016/j.xphs.2017.04.011. PubMed DOI
Beck-Broichsitter M, Gauss J, Gessler T, Seeger W, Kissel T, Schmehl T. Pulmonary targeting with biodegradable salbutamol-loaded nanoparticles. J Aerosol Med Pulm Drug Deliv. 2010;23:47–57. doi: 10.1089/jamp.2009.0759. PubMed DOI
Morris CJ, Smith MW, Griffiths PC, McKeown NB, Gumbleton M. Enhanced pulmonary absorption of a macromolecule through coupling to a sequence-specific phage display-derived peptide. J Control Release. 2011;151(1):83–94. doi: 10.1016/j.jconrel.2010.12.003. PubMed DOI
Bayard FJC, Thielemans W, Pritchard DI, Paine SW, Young SS, Bäckman P, et al. Polyethylene glycol-drug ester conjugates for prolonged retention of small inhaled drugs in the lung. J Control Release. 2013;171(2):234–240. doi: 10.1016/j.jconrel.2013.07.023. PubMed DOI
Ong HX, Benaouda F, Traini D, Cipolla D, Gonda I, Bebawy M, et al. In vitro and ex vivo methods predict the enhanced lung residence time of liposomal ciprofloxacin formulations for nebulisation. Eur J Pharm Biopharm. 2014;86:83–89. doi: 10.1016/j.ejpb.2013.06.024. PubMed DOI
Beck-Broichsitter M, Stoisiek K, Bohr A, Aragão-Santiago L, Gessler T, Seeger W, et al. Potential of the isolated lung technique for the examination of sildenafil absorption from lung-delivered poly(lactide-co-glycolide) microparticles. J Control Release. 2016;226:15–20. doi: 10.1016/j.jconrel.2016.01.057. PubMed DOI
Mainprize T, Grady LT. Standardization of an in vitro method of drug absorption. Pharm Forum. 1998;24:6015–6023.
Forbes B, Asgharian B, Dailey LA, Ferguson D, Gerde P, Gumbleton M, Hardy C, Hassall D, Gustavsson L, Jones R, Lock R, Maas J, McGoverin T, Pitcairn G, Somers G, Wolff R. Challenges in inhaled product development and opportunities for open innovation. Adv Drug Deliv Rev. 2011;63:69–87. doi: 10.1016/j.addr.2010.11.004. PubMed DOI
Jones RM, Harrison A. A new methodology for predicting human pharmacokinetics for inhaled drugs from oratracheal pharmacokinetic data in rats. Xenobiotica. 2012;42(1):75–85. doi: 10.3109/00498254.2011.626465. PubMed DOI
Avdeef A, Bendels S, Di L, Faller B, Kansy M, Sugano K, Yamauchi Y. PAMPA—critical factors for better predictions of absorption. J Pharm Sci. 2007;96:2893–2909. doi: 10.1002/jps.21068. PubMed DOI
Fredlund Linda, Winiwarter Susanne, Hilgendorf Constanze. In Vitro Intrinsic Permeability: A Transporter-Independent Measure of Caco-2 Cell Permeability in Drug Design and Development. Molecular Pharmaceutics. 2017;14(5):1601–1609. doi: 10.1021/acs.molpharmaceut.6b01059. PubMed DOI