Multi-locus sequence typing (MLST) of non-fermentative Gram-negative bacilli isolated from bloodstream infections in southern Poland
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28940128
PubMed Central
PMC5805803
DOI
10.1007/s12223-017-0550-7
PII: 10.1007/s12223-017-0550-7
Knihovny.cz E-zdroje
- Klíčová slova
- Bloodstream infection, MLST, Non-fermentative gram negative bacilli,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriemie mikrobiologie MeSH
- fylogeneze MeSH
- gramnegativní bakterie klasifikace účinky léků genetika izolace a purifikace MeSH
- infekce spojené se zdravotní péčí krev mikrobiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- multilokusová sekvenční typizace MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
- Názvy látek
- antibakteriální látky MeSH
Non-fermentative Gram-negative bacilli are now one of the most important causes of severe infections in Polish hospitals. Acinetobacter species are serious concern because of the high prevalence of multi-drug resistance among strains. Resistance profiles for 53 Gram-negative non-fermentative blood isolates were done. MLST was carried out using 44 strains representing the most commonly isolated species: A. baumannii, P. aeruginosa, and S. maltophilia. MLST revealed that all 22 A. baumannii belonged to sequence type (ST) 2. The P. aeruginosa isolates belonged to 10 different STs. Four S. maltophilia isolates matched STs present in the database (ST4, ST15, ST116, ST142), seven isolates showing novel sequence types. Among P. aeruginosa and S. maltophilia PFGE confirmed the genetical variety of strains.
Zobrazit více v PubMed
Araoka H, Baba M, Yoneyama A. Risk factors for mortality among patients with Stenotrophomonas maltophilia bacteremia in Tokyo, Japan, 1996–2009. Eur J Clin Microbiol Infect Dis. 2010;29:605–608. doi: 10.1007/s10096-010-0882-6. PubMed DOI
Baang JH, Axelrod P, Decker BK, Hujer AM, Dash G, Truant AR, et al. Longitudinal epidemiology of multidrug-resistant (MDR) Acinetobacter species in a tertiary care hospital. Am J Infect Control. 2012;40(2):134–137. doi: 10.1016/j.ajic.2011.04.326. PubMed DOI PMC
Centers for Disease Control and Prevention Acinetobacter Baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002–2004. MMWR Morb Mortal Wkly Rep. 2004;53:1063–1066. PubMed
Chmielarczyk A, Pilarczyk-Żurek M, Kamińska W, Pobiega M, Romaniszyn D, Ziółkowski G, et al. Molecular epidemiology and drug resistance of Acinetobacter Baumannii isolated from hospitals in southern Poland: ICU as a risk factor for XDR strains. Microb Drug Resist. 2016;22(4):328–335. doi: 10.1089/mdr.2015.0224. PubMed DOI
Cho SY, Kang CI, Kim J, Ha YE, Chung DR, Lee NY, et al. Can levofloxacin be a useful alternative to trimethoprim-sulfamethoxazole for treating Stenotrophomonas maltophilia bacteremia? Antimicrob Agents Chemother. 2014;58(1):581–583. doi: 10.1128/AAC.01682-13. PubMed DOI PMC
Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas Aeruginosa. J Clin Microbiol. 2004;42(12):5644–5649. doi: 10.1128/JCM.42.12.5644-5649.2004. PubMed DOI PMC
Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. The population structure of Acinetobacter Baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One. 2010;7:e10034. doi: 10.1371/journal.pone.0010034. PubMed DOI PMC
Dimopoulos G, Koulenti D, Tabah A, Poulakou G, Vesin A, Arvaniti K, et al. Bloodstream infections in ICU with increased resistance: epidemiology and outcomes. Minerva Anestesiol. 2015;81(4):405–418. PubMed
Fitzpatrick MA, Ozer EA, Hauser AR. Utility of whole-genome sequencing in characterizing Acinetobacter epidemiology and analyzing hospital outbreaks. J Clin Microbiol. 2016;54(3):593–612. doi: 10.1128/JCM.01818-15. PubMed DOI PMC
Garazi M, Singer C, Tai J, Ginocchio CC. Bloodstream infections caused by Stenotrophomonas maltophilia: a seven-year review. J Hosp Infect. 2012;81:114–118. doi: 10.1016/j.jhin.2012.02.008. PubMed DOI
Hotta G, Matsumura Y, Kato K, Nakano S, Yunoki T, Yamamoto M, et al. Risk factors and outcomes of Stenotrophomonas maltophilia bacteraemia: a comparison with bacteraemia caused by Pseudomonas Aeruginosa and Acinetobacter species. PLoS One. 2014;9(11):e112208. doi: 10.1371/journal.pone.0112208. PubMed DOI PMC
Kaiser S, Biehler K, Jonas D. A Stenotrophomonas maltophilia multilocus sequence typing scheme for inferring population structure. J Bacteriol. 2009;191(9):2934–2943. doi: 10.1128/JB.00892-08. PubMed DOI PMC
Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, et al. Pseudomonas Aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003;37:745–751. doi: 10.1086/377200. PubMed DOI
Livermore DM, Hope R, Brick G, Lillie M, Reynolds R. BSAC working parties on resistance surveillance. Non-susceptibility trends among Pseudomonas Aeruginosa and other non-fermentative gram-negative bacteria from bacteraemias in the UK and Ireland, 2001-06. J Antimicrob Chemother. 2008;62(Suppl 2):ii55–ii63. PubMed
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi: 10.1111/j.1469-0691.2011.03570.x. PubMed DOI
Martis N, Leroy S, Blanc V. Colistin in multi-drug resistant Pseudomonas Aeruginosa blood-stream infections: a narrative review for the clinician. J Inf Secur. 2014;69(1):1–12. PubMed
Munoz-Price LS, Zembower T, Penugonda S, Schreckenberger P, Lavin MA, Welbel S, et al. Clinical outcomes of carbapenem-resistant Acinetobacter Baumannii bloodstream infections: study of a 2-state monoclonal outbreak. Infect Control Hosp Epidemiol. 2010;31(10):1057–1062. doi: 10.1086/656247. PubMed DOI
Pena C, Gomez-Zorrilla S, Suarez C, Dominguez MA, Tubau F, Arch O, et al. Extensively drug-resistant Pseudomonas Aeruginosa: risk of bloodstream infection in hospitalized patients. Eur J Clin Microbiol Infect Dis. 2012;31:2791–2797. doi: 10.1007/s10096-012-1629-3. PubMed DOI
Pena C, Suarez C, Gozalo M, Murillas J, Almirante B, Pomar V, et al. Spanish network for research in infectious diseases REIPI. Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas Aeruginosa bloodstream infections. Antimicrob Agents Chemother. 2012;56:1265–1272. doi: 10.1128/AAC.05991-11. PubMed DOI PMC
Picot-Guéraud R, Batailler P, Caspar Y, Hennebique A, Mallaret MR. Bacteremia caused by multidrug-resistant bacteria in a French university hospital center: 3 years of collection. Am J Infect Control. 2015;43(9):960–964. doi: 10.1016/j.ajic.2015.05.004. PubMed DOI
Rattanaumpawan P, Ussavasodhi P, Kiratisin P, Aswapokee N. Epidemiology of bacteremia caused by uncommon non-fermentative gram-negative bacteria. BMC Infect Dis. 2013;13:167. doi: 10.1186/1471-2334-13-167. PubMed DOI PMC
Senol E, Des Jardin J, Stark PC, Barefoot L, Snydman DR. Attributable mortality of Stenotrophomonas maltophilia bacteremia. Clin Infect Dis. 2002;34:1653–1656. doi: 10.1086/340707. PubMed DOI
Shueh CS, Neela V, Hussin S, Hamat RA. Simple, time saving pulsed-field gel electrophoresis protocol for the typing of Stenotrophomonas maltophilia. J Microbiol Methods. 2013;94(2):141–143. doi: 10.1016/j.mimet.2013.06.001. PubMed DOI
Siebor E, Llanes C, Lafon I, Ogier-Desserrey A, Duez JM, Pechinot A, et al. Presumed pseudobacteremia outbreak resulting from contamination of proportional disinfectant dispenser. Eur J Clin Microbiol Infect Dis. 2007;26(3):195–198. doi: 10.1007/s10096-007-0260-1. PubMed DOI
Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013;34:1–14. doi: 10.1086/668770. PubMed DOI
Sligl WI, Dragan T, Smith SW. Nosocomial gram-negative bacteremia in intensiva care: epidemiology, antimicrobial susceptibilities, and outcomes. Int J Infect Dis. 2015;7:129–134. doi: 10.1016/j.ijid.2015.06.024. PubMed DOI
Vidal F, Mensa J, Almela M, Olona M, Martínez JA, Marco F, et al. Bacteraemia in adults due to glucose non-fermentative gram-negative bacilli other than P. Aeruginosa. QJM. 2003;96(3):227–234. doi: 10.1093/qjmed/hcg031. PubMed DOI
Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–317. doi: 10.1086/421946. PubMed DOI
Wybo I, Blommaert L, De Beer T, Soetens O, De Regt J, Lacor P, et al. Outbreak of multidrug-resistant Acinetobacter Baumannii in a Belgian university hospital after transfer of patients from Greece. J Hosp Infect. 2007;67(4):374–380. doi: 10.1016/j.jhin.2007.09.012. PubMed DOI