Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28952532
PubMed Central
PMC5590457
DOI
10.3390/bioengineering4020053
PII: bioengineering4020053
Knihovny.cz E-zdroje
- Klíčová slova
- Burkholderia, detoxification, lignite, polyhydroxyalkanoates,
- Publikační typ
- časopisecké články MeSH
Polyhydroxyalkanoates (PHAs) are bacterial polyesters which are considered biodegradable alternatives to petrochemical plastics. PHAs have a wide range of potential applications, however, the production cost of this bioplastic is several times higher. A major percentage of the final cost is represented by the price of the carbon source used in the fermentation. Burkholderia cepacia and Burkholderia sacchari are generally considered promising candidates for PHA production from lignocellulosic hydrolyzates. The wood waste biomass has been subjected to hydrolysis. The resulting hydrolyzate contained a sufficient amount of fermentable sugars. Growth experiments indicated a strong inhibition by the wood hydrolyzate. Over-liming and activated carbon as an adsorbent of inhibitors were employed for detoxification. All methods of detoxification had a positive influence on the growth of biomass and PHB production. Furthermore, lignite was identified as a promising alternative sorbent which can be used for detoxification of lignocellulose hydrolyzates. Detoxification using lignite instead of activated carbon had lower inhibitor removal efficiency, but greater positive impact on growth of the bacterial culture and overall PHA productivity. Moreover, lignite is a significantly less expensive adsorbent in comparison with activated charcoal and; moreover, used lignite can be simply utilized as a fuel to, at least partially, cover heat and energetic demands of fermentation, which should improve the economic feasibility of the process.
Zobrazit více v PubMed
Steinbüchel A. Perspectives for Biotechnological Production and Utilization of Biopolymers: Metabolic Engineering of Polyhydroxyalkanoate Biosynthesis Pathways as a Successful Example. Macromol. Biosci. 2001;1:1–24. doi: 10.1002/1616-5195(200101)1:1<1::AID-MABI1>3.0.CO;2-B. DOI
Ivanov V., Stabnikov V., Ahmed Z., Dobrenko S., Saliuk A. Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. Int. J. Environ. Sci. Technol. 2015;12:725–738. doi: 10.1007/s13762-014-0505-3. DOI
Choi J., Lee S.Y. Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl. Microbiol. Biotechnol. 1999;51:13–21. doi: 10.1007/s002530051357. DOI
Obruca S., Benesova P., Kucera D., Petrik S., Marova I. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnol. 2015;32:569–574. doi: 10.1016/j.nbt.2015.02.008. PubMed DOI
Amidon T.E., Wood C.D., Shupe A.M., Wang Y., Graves M., Liu S. Biorefinery: Conversion of Woody Biomass to Chemicals, Energy and Materials. J. Biobased Mater. Bioenergy. 2008;2:100–120. doi: 10.1166/jbmb.2008.302. DOI
Canilha L., Kumar Chandel A., dos Santos Milessi T.S., Fernandes Antunes F.A., da Costa Freitas W.L., das Graças Almeida Fellipe M., da Silva S.S. Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation. J. Biomed. Biotechnol. 2012;2012:1–15. doi: 10.1155/2012/989572. PubMed DOI PMC
Doskočil L., Grasset L., Enev V., Kalina L., Pekař M. Study of water-extractable fractions from South Moravian lignite. Environ. Earth Sci. 2015;73:3873–3885. doi: 10.1007/s12665-014-3671-1. DOI
Pan W., Perrotta J.A., Stipanovic A.J., Nomura C.T., Nakas J.P. Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. J. Ind. Microbiol. Biotechnol. 2012;39:459–469. doi: 10.1007/s10295-011-1040-6. PubMed DOI
Bowers T., Vaidya A., Smith D.A., Lloyd-Jones G. Softwood hydrolysate as a carbon source for polyhydroxyalkanoate production. J. Chem. Technol. Biotechnol. 2014;89:1030–1037. doi: 10.1002/jctb.4196. DOI
Silva J.A., Tobella L.M., Becerra J., Godoy F., Martínez M.A. Biosynthesis of poly-β-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source. J. Biosci. Bioeng. 2007;103:542–546. doi: 10.1263/jbb.103.542. PubMed DOI
Keenan T.M., Tanenbaum S.W., Stipanovic A.J., Nakas J.P. Production and Characterization of Poly-β-hydroxyalkanoate Copolymers from Burkholderia cepacia Utilizing Xylose and Levulinic Acid. Biotechnol. Prog. 2004;20:1697–1704. doi: 10.1021/bp049873d. PubMed DOI
Wang Y., Liu S. Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates. AMB Express. 2014;4 doi: 10.1186/s13568-014-0028-9. PubMed DOI PMC
Ranatunga T.D., Jervis J., Helm R.F., McMillan J.D., Wooley R.J. The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: The role of inorganics, uronic acids and ether-soluble organics. Enzyme Microb. Technol. 2000;27:240–247. doi: 10.1016/S0141-0229(00)00216-7. PubMed DOI
Li H.-B., Wong C.-C., Cheng K.-W., Chen F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. Food Sci. Technol. 2008;41:385–390. doi: 10.1016/j.lwt.2007.03.011. DOI
Obruca S., Marova I., Melusova S., Mravcova L. Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann. Microbiol. 2011;61:947–953. doi: 10.1007/s13213-011-0218-5. DOI
Brandl H., Gross R.A., Lenz R.W., Fuller R.C. Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential application as a biodegradable polyester. Appl. Environ. Microbiol. 1988;54:1977–1982. PubMed PMC
Peters D. Raw Materials. In: Ulber R., Sell D., editors. White Biotechnology. Springer; Berlin, Germany: 2007. pp. 1–30.
Obruca S., Benešová P., Maršálek L., Márová I. Use of Lignocellulosic Materials for PHA Production. Chem. Biochem. Eng. Q. 2015;29:135–144. doi: 10.15255/CABEQ.2014.2253. DOI
Wyman C.E., Decker S.R., Himmel M.E., Brady J.W., Skopec C.E., Viikari L. In: Hydrolysis of Cellulose and Hemicellulose. Dumitriu S., editor. CRC Press; New York, NY, USA: 2004. pp. 995–1034.
Obruca S., Marova I., Svoboda Z., Mikulikova R. Use of controlled exogenous stress for improvement of poly (3-hydroxybutyrate) production in Cupriavidus necator. Folia Microbiol. 2010;55:17–22. doi: 10.1007/s12223-010-0003-z. PubMed DOI
Passanha P., Kedia G., Dinsdale R.M., Guwy A.J., Esteves S.R. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator. Bioresour. Technol. 2014;163:287–294. doi: 10.1016/j.biortech.2014.04.068. PubMed DOI
Jönsson L.J., Alriksson B., Nilvebrant N.-O. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels. 2013;6 doi: 10.1186/1754-6834-6-16. PubMed DOI PMC
Chandel A.K., da Silva S.S., Singh O.V. Detoxification of Lignocellulose Hydrolysates: Biochemical and Metabolic Engineering Toward White Biotechnology. Bioenergy Res. 2013;6:388–401. doi: 10.1007/s12155-012-9241-z. DOI
Mussatto S.I., Roberto I.C. Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii. Braz. Arch. Biol. Technol. 2005;48:497–502. doi: 10.1590/S1516-89132005000300020. DOI
Babel S., Kurniawan T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003;97:219–243. doi: 10.1016/S0304-3894(02)00263-7. PubMed DOI
Lignite. [(accessed on 26 April 2017)]; Available online: https://www.alibaba.com.
Obruca S., Benesova P., Kucera D., Marova I. Novel Inexpensive Feedstocks from Agriculture and Industry for Microbial Polyester Production. In: Koller M., editor. Recent Advances in Biotechnology; Microbial Biopolyester Production, Performance and Processing Microbiology, Feedstocks, and Metabolism. Bentham Science; Berlin, Germany: 2016. pp. 3–99.
Parawira W., Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Crit. Rev. Biotechnol. 2011;31:20–31. doi: 10.3109/07388551003757816. PubMed DOI
Gautam R.K., Mudhoo A., Lofrano G., Chattopadhyaya M.C. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014;2:239–259. doi: 10.1016/j.jece.2013.12.019. DOI
De Gisi S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016;9:10–40. doi: 10.1016/j.susmat.2016.06.002. DOI
Polat H., Molva M., Polat M. Capacity and mechanism of phenol adsorption on lignite. Int. J. Miner. Process. 2006;79:264–273. doi: 10.1016/j.minpro.2006.03.003. DOI
Klucakova M., Pavlikova M. Lignitic Humic Acids as Environmentally-Friendly Adsorbent for Heavy Metals. J. Chem. 2017;2017:1–5. doi: 10.1155/2017/7169019. DOI
Robles I., Bustos E., Lakatos J. Adsorption study of mercury on lignite in the presence of different anions. Sustain. Environ. Res. 2016;26:136–141. doi: 10.1016/j.serj.2016.04.008. DOI