Convex congruences
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29026344
PubMed Central
PMC5613104
DOI
10.1007/s00500-016-2306-8
PII: 2306
Knihovny.cz E-zdroje
- Klíčová slova
- Algebra with induced order, BCI-algebra, BCK-algebra, Convex class, Convex congruence,
- Publikační typ
- časopisecké články MeSH
For an algebra [Formula: see text] belonging to a quasivariety [Formula: see text], the quotient [Formula: see text] need not belong to [Formula: see text] for every [Formula: see text]. The natural question arises for which [Formula: see text]. We consider algebras [Formula: see text] of type (2, 0) where a partial order relation is determined by the operations [Formula: see text] and 1. Within these, we characterize congruences on [Formula: see text] for which [Formula: see text] belongs to the same quasivariety as [Formula: see text]. In several particular cases, these congruences are determined by the property that every class is a convex subset of A.
Zobrazit více v PubMed
Arai Y, Iséki K, Tanaka S. Characterizations of BCI, BCK-algebras. Proc Jpn Acad. 1966;42:105–107. doi: 10.3792/pja/1195522126. DOI
Chajda I. A structure of BCI-algebras. Int J Theor Phys. 2014;53:3391–3396. doi: 10.1007/s10773-013-1739-4. DOI
Chajda I, Halaš R, Kühr J. Semilattice structures. Lemgo: Heldermann; 2007.
Chajda I, Kühr J. Algebraic structures derived from BCK-algebras. Miskolc Math Notes. 2007;8:11–21.
Huang Y. BCI-algebras. Beijing: Science Press; 2006.
Imai Y, Iséki K. On axiom systems of propositional calculi. XIV Proc Jpn Acad. 1966;42:19–22. doi: 10.3792/pja/1195522169. DOI
Iséki K. An algebra related with a propositional calculus. Proc Jpn Acad. 1966;42:26–29. doi: 10.3792/pja/1195522171. DOI
Traczyk T, Zarȩbski W. Convex congruences on BCK-algebras. Demonstr Math. 1985;18:319–323.
Wroński A. BCK-algebras do not form a variety. Math Jpn. 1983;28:211–213.