Convex congruences

. 2017 ; 21 (19) : 5641-5645. [epub] 20160809

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29026344

For an algebra [Formula: see text] belonging to a quasivariety [Formula: see text], the quotient [Formula: see text] need not belong to [Formula: see text] for every [Formula: see text]. The natural question arises for which [Formula: see text]. We consider algebras [Formula: see text] of type (2, 0) where a partial order relation is determined by the operations [Formula: see text] and 1. Within these, we characterize congruences on [Formula: see text] for which [Formula: see text] belongs to the same quasivariety as [Formula: see text]. In several particular cases, these congruences are determined by the property that every class is a convex subset of A.

Zobrazit více v PubMed

Arai Y, Iséki K, Tanaka S. Characterizations of BCI, BCK-algebras. Proc Jpn Acad. 1966;42:105–107. doi: 10.3792/pja/1195522126. DOI

Chajda I. A structure of BCI-algebras. Int J Theor Phys. 2014;53:3391–3396. doi: 10.1007/s10773-013-1739-4. DOI

Chajda I, Halaš R, Kühr J. Semilattice structures. Lemgo: Heldermann; 2007.

Chajda I, Kühr J. Algebraic structures derived from BCK-algebras. Miskolc Math Notes. 2007;8:11–21.

Huang Y. BCI-algebras. Beijing: Science Press; 2006.

Imai Y, Iséki K. On axiom systems of propositional calculi. XIV Proc Jpn Acad. 1966;42:19–22. doi: 10.3792/pja/1195522169. DOI

Iséki K. An algebra related with a propositional calculus. Proc Jpn Acad. 1966;42:26–29. doi: 10.3792/pja/1195522171. DOI

Traczyk T, Zarȩbski W. Convex congruences on BCK-algebras. Demonstr Math. 1985;18:319–323.

Wroński A. BCK-algebras do not form a variety. Math Jpn. 1983;28:211–213.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...