Recent advances and current trends in brain-computer interface research and their applications

. 2022 Apr ; 82 (2) : 107-123. [epub] 20220124

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34939217

Grantová podpora
IGA/CebiaTech/2021/005 Internal Grant Agency

Brain-computer interface (BCI) provides direct communication between the brain and an external device. BCI systems have become a trendy field of research in recent years. These systems can be used in a variety of applications to help both disabled and healthy people. Concerning significant BCI progress, we may assume that these systems are not very far from real-world applications. This review has taken into account current trends in BCI research. In this survey, 100 most cited articles from the WOS database were selected over the last 4 years. This survey is divided into several sectors. These sectors are Medicine, Communication and Control, Entertainment, and Other BCI applications. The application area, recording method, signal acquisition types, and countries of origin have been identified in each article. This survey provides an overview of the BCI articles published from 2016 to 2020 and their current trends and advances in different application areas.

Zobrazit více v PubMed

Aghaei, A. S., Mahanta, M. S., & Plataniotis, K. N. (2016). Separable common spatio-spectral patterns for motor imagery BCI systems. IEEE Transactions on Biomedical Engineering, 63, 15-29. https://doi.org/10.1109/TBME.2015.2487738

Ahn, S., Nguyen, T., Jang, H., Kim, J. G., & Jun, S. C. (2016). Exploring neuro-physiological correlates of Drivers' mental fatigue caused by sleep deprivation using simultaneous EEG, ECG, and fNIRS data. Frontiers in Human Neuroscience, 10, 219. https://doi.org/10.3389/fnhum.2016.00219

Ajiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy, B. A., Miller, J. P., Walter, B. L., Sweet, J. A., Hoyen, H. A., Keith, M. W., Peckham, P. H., Simeral, J. D., Donoghue, J. P., Hochberg, L. R., & Kirsch, R. F. (2017). Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. The Lancet, 389(10081), 1821-1830. https://doi.org/10.1016/s0140-6736(17)30601-3

Ang, K. K., & Guan, C. (2017). EEG-based strategies to detect motor imagery for control and rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 392-401. https://doi.org/10.1109/TNSRE.2016.2646763

Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Bonelli, S., Golfetti, A., Pozzi, S., Imbert, J. P., Granger, G., Benhacene, R., & Babiloni, F. (2016). Adaptive automation triggered by EEG-Based mental workload index: A passive brain-computer interface application in realistic air traffic control environment. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00539

Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Pozzi, S., & Babiloni, F. (2016). A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks. Progress in Brain Research, 228, 295-328. https://doi.org/10.1016/bs.pbr.2016.04.021

Arico, P., Borghini, G., di Flumeri, G., Sciaraffa, N., & Babiloni, F. (2018). Passive BCI beyond the lab: current trends and future directions. Physiological Measurement, 39, 08TR02.

Arico, P., Borghini, G., di Flumeri, G., Sciaraffa, N., Colosimo, A., & Babiloni, F. (2017). Passive BCI in operational environments: Insights, recent advances, and future trends. IEEE Transactions on Biomedical Engineering, 64, 1431-1436. https://doi.org/10.1109/TBME.2017.2694856

Atkinson, J., & Campos, D. (2016). Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Systems with Applications, 47, 35-41. https://doi.org/10.1016/j.eswa.2015.10.049

Barrese, J. C., Aceros, J., & Donoghue, J. P. (2016). Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering, 13, 026003.

Baykara, E., Ruf, C. A., Fioravanti, C., Käthner, I., Simon, N., Kleih, S. C., Kübler, A., & Halder, S. (2016). Effects of training and motivation on auditory P300 brain-computer interface performance. Clinical Neurophysiology, 127(1), 379-387. https://doi.org/10.1016/j.clinph.2015.04.054

Biasiucci, A., Leeb, R., Iturrate, I., Perdikis, S., Al-Khodairy, A., Corbet, T., Schnider, A., Schmidlin, T., Zhang, H., Bassolino, M., Viceic, D., Vuadens, P., Guggisberg, A. G., & Millán, J. d. R. (2018). Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature Communications, 9(1), 2421. https://doi.org/10.1038/s41467-018-04673-z

Bleichner, M. G., & Debener, S. (2017). Concealed, unobtrusive ear-centered EEG acquisition: cEEGrids for transparent EEG. Frontiers in Human Neuroscience, 11, 163. https://doi.org/10.3389/fnhum.2017.00163

Bleichner, M. G., Freudenburg, Z. V., Jansma, J. M., Aarnoutse, E. J., Vansteensel, M. J., & Ramsey, N. F. (2016). Give me a sign: Decoding four complex hand gestures based on high-density ECoG. Brain Structure & Function, 221, 203-216. https://doi.org/10.1007/s00429-014-0902-x

Bradford, J. C., Lukos, J. R., & Ferris, D. P. (2016). Electrocortical activity distinguishes between uphill and level walking in humans. Journal of Neurophysiology, 115, 958-966. https://doi.org/10.1152/jn.00089.2015

Branco, M. P., Freudenburg, Z. V., Aarnoutse, E. J., Bleichner, M. G., Vansteensel, M. J., & Ramsey, N. F. (2017). Decoding hand gestures from primary somatosensory cortex using high-density ECoG. NeuroImage, 147, 130-142. https://doi.org/10.1016/j.neuroimage.2016.12.004

Brandman, D. M., Cash, S. S., & Hochberg, L. R. (2017). Review: Human Intracortical recording and neural decoding for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 1687-1696. https://doi.org/10.1109/TNSRE.2017.2677443

Buccino, A. P., Keles, H. O., & Omurtag, A. (2016). Hybrid EEG-fNIRS asynchronous brain-computer interface for multiple motor tasks. PLoS ONE, 11, e0146610. https://doi.org/10.1371/journal.pone.0146610

Bundy, D. T., Pahwa, M., Szrama, N., & Leuthardt, E. C. (2016). Decoding three-dimensional reaching movements using electrocorticographic signals in humans. Journal of Neural Engineering, 13, 026021.

Bundy, D. T., Souders, L., Baranyai, K., Leonard, L., Schalk, G., Coker, R., Moran, D. W., Huskey, T., & Leuthardt, E. C. (2017). Contralesional Brain-Computer Interface Control of a Powered Exoskeleton for Motor Recovery in Chronic Stroke Survivors. Stroke, 48, 1908-1915. https://doi.org/10.1161/STROKEAHA.116.016304

Chai, R., Naik, G. R., Nguyen, T. N., Ling, S. H., Tran, Y., Craig, A., & Nguyen, H. T. (2017). Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE Journal of Biomedical and Health Informatics, 21, 715-724. https://doi.org/10.1109/JBHI.2016.2532354

Du, Z. J., Kolarcik, Ch. L., Kozai, T. D. Y., Luebben, S. D., Sapp, S. A., Zheng, X. S., Nabity, J. A., & Cui, X. T. (2017). Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomaterialia, 53, 46-58. https://doi.org/10.1016/j.actbio.2017.02.010

Edelman, B. J., Baxter, B., & He, B. (2016). EEG source imaging enhances the decoding of complex right-hand motor imagery tasks. IEEE Transactions on Biomedical Engineering, 63, 4-14. https://doi.org/10.1109/TBME.2015.2467312

Frolov, A. A., Mokienko, O., Lyukmanov, R., Biryukova, E., Kotov, S., Turbina, L., Nadareyshvily, G., & Bushkova, Y. (2017). Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: A randomized controlled multicenter trial. Frontiers in Human Neuroscience, 11, 400. https://doi.org/10.3389/fnins.2017.00400

Fuglsang, S. A., Dau, T., & Hjortkjaer, J. (2017). Noise-robust cortical tracking of attended speech in real-world acoustic scenes. NeuroImage, 156, 435-444. https://doi.org/10.1016/j.neuroimage.2017.04.026

Gagnon-Turcotte, G., LeChasseur, Y., Bories, C., Messaddeq, Y., de Koninck, Y., & Gosselin, B. (2017). A wireless headstage for combined Optogenetics and multichannel electrophysiological recording. IEEE Transactions on Biomedical Circuits and Systems, 11, 1-14.

Gaur, P., Pachori, R. B., Wang, H., & Prasad, G. (2018). A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Systems with Applications, 95, 201-211. https://doi.org/10.1016/j.eswa.2017.11.007

Golub, M. D., Sadtler, P. T., Oby, E. R., Quick, K. M., Ryu, S. I., Tyler-Kabara, E. C., Batista, A. P., Chase, S. M., & Yu, B. M. (2018). Learning by neural reassociation. Nature Neuroscience, 21, 607-616. https://doi.org/10.1038/s41593-018-0095-3

Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). Decoding dynamic brain patterns from evoked responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of Cognitive Neuroscience, 29, 677-697. https://doi.org/10.1162/jocn_a_01068

Gupta, R., ur Rehman Laghari, K., & Falk, T. H. (2016). Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization. Neurocomputing, 174, 875-884. https://doi.org/10.1016/j.neucom.2015.09.085

He, L., Hu, D., Wan, M., Wen, Y., von Deneen, K. M., & Zhou, M. (2016). Common Bayesian network for classification of EEG-based multiclass motor imagery BCI. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, 843-854. https://doi.org/10.1109/TSMC.2015.2450680

Hong, K.-S., & Khan, M. J. (2017). Hybrid brain-computer interface techniques for improved classification accuracy and increased number of commands: A review. Frontiers in Neurorobotics, 11, 35. https://doi.org/10.3389/fnbot.2017.00035

Hong, K.-S., & Naseer, N. (2016). Reduction of delay in detecting initial dips from functional near-infrared spectroscopy signals using vector-based phase analysis. International Journal of Neural Systems, 26, 1650012. https://doi.org/10.1142/S012906571650012X

Hong, K.-S., & Santosa, H. (2016). Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hearing Research, 333, 157-166. https://doi.org/10.1016/j.heares.2016.01.009

Hotson, G., McMullen, D. P., Fifer, M. S., Johannes, M. S., Katyal, K. D., Para, M. P., Armiger, R., Anderson, W. S., Thakor, N. V., Wester, B. A., & Crone, N. E. (2016). Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. Journal of Neural Engineering, 13(2), 026017. https://doi.org/10.1088/1741-2560/13/2/026017

Hramov, A. E., Maksimenko, V. A., Pchelintseva, S. V., Runnova, A. E., Grubov, V. V., Musatov, V. Y., Zhuravlev, M. O., Koronovskii, A. A., & Pisarchik, A. N. (2017). Classifying the perceptual interpretations of a Bistable image using EEG and artificial neural networks. Frontiers in Neuroscience, 11, 674. https://doi.org/10.3389/fnins.2017.00674

Hsu, S.-H., Mullen, T. R., Jung, T.-P., & Cauwenberghs, G. (2016). Real-time adaptive EEG source separation using online recursive independent component analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24, 309-319. https://doi.org/10.1109/TNSRE.2015.2508759

Jayaram, V., Alamgir, M., Altun, Y., Scholkopf, B., & Grosse-Wentrup, M. (2016). Transfer learning in brain-computer interfaces. IEEE Computational Intelligence Magazine, 11, 20-31. https://doi.org/10.1109/MCI.2015.2501545

Jeunet, C., Jahanpour, E., & Lotte, F. (2016). Why standard brain-computer interface (BCI) training protocols should be changed: An experimental study. Journal of Neural Engineering, 13, 036024.

Jiao, Y., Zhang, Y., Chen, X., Yin, E., Jin, J., Wang, X. Y., & Cichocki, A. (2019). Sparse group representation model for motor imagery EEG classification. IEEE Journal of Biomedical and Health Informatics, 23, 631-641. https://doi.org/10.1109/JBHI.2018.2832538

Jiao, Y., Zhang, Y., Wang, Y., Wang, B., Jin, J., & Wang, X. (2018). A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain-computer interface. International Journal of Neural Systems, 28, 1750039. https://doi.org/10.1142/S0129065717500393

Jin, J., Zhang, H., Daly, I., Wang, X., & Cichocki, A. (2017). An improved P300 pattern in BCI to catch user's attention. Journal of Neural Engineering, 14, 036001.

Jin, Z., Zhou, G., Gao, D., & Zhang, Y. (2020). EEG classification using sparse Bayesian extreme learning machine for brain-computer interface. Neural Computing and Applications, 32, 6601-6609. https://doi.org/10.1007/s00521-018-3735-3

Kellis, S., Sorensen, L., Darvas, F., Sayres, C., O’Neill, K., Brown, R. B., House, P., Ojemann, J., & Greger, B. (2016). Multi-scale analysis of neural activity in humans: Implications for micro-scale electrocorticography. Clinical Neurophysiology, 127(1), 591-601. https://doi.org/10.1016/j.clinph.2015.06.002

Kevric, J., & Subasi, A. (2017). Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomedical Signal Processing and Control, 31, 398-406. https://doi.org/10.1016/j.bspc.2016.09.007

Keynan, J. N., Meir-Hasson, Y., Gilam, G., Cohen, A., Jackont, G., Kinreich, S., Ikar, L., Or-Borichev, A., Etkin, A., Gyurak, A., Klovatch, I., Intrator, N., & Hendler, T. (2016). Limbic activity modulation guided by functional magnetic resonance imaging-inspired electroencephalography improves implicit emotion regulation. Biological Psychiatry, 80(6), 490-496. https://doi.org/10.1016/j.biopsych.2015.12.024

Khan, M. J., & Hong, K. S. (2017). Hybrid EEG-fNIRS-based eight-command decoding for BCI: Application to quadcopter control. Frontiers in Neurorobotics, 11, 6. https://doi.org/10.3389/fnbot.2017.00006

Kilicarslan, A., Grossman, R. G., & Contreras-Vidal, J. L. (2016). A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. Journal of Neural Engineering, 13, 026013. https://doi.org/10.1088/1741-2560/13/2/026013

Kozai, T. D. Y., Catt, K., Du, Z., Na, K., Srivannavit, O., Haque, R. M., Seymour, J., Wise, K. D., Yoon, E., & Cui, X. T. (2016). Chronic in vivo evaluation of PEDOT/CNT for stable neural recordings. IEEE Transactions on Biomedical Engineering, 63(1), 111-119. https://doi.org/10.1109/tbme.2015.2445713

Kraus, D., Naros, G., Bauer, R., Khademi, F., Leão, M. T., Ziemann, U., & Gharabaghi, A. (2016). Brain state-dependent transcranial magnetic closed-loop stimulation controlled by sensorimotor desynchronization induces robust increase of corticospinal excitability. Brain Stimulation, 9, 415-424. https://doi.org/10.1016/j.brs.2016.02.007

Kraus, D., Naros, G., Bauer, R., Leão, M. T., Ziemann, U., & Gharabaghi, A. (2016). Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability. NeuroImage, 125, 522-532. https://doi.org/10.1016/j.neuroimage.2015.09.074

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces. Journal of Neural Engineering, 15, 056013.

Lazarou, I., Nikolopoulos, S., Petrantonakis, P. C., Kompatsiaris, I., & Tsolaki, M. (2018). EEG-based brain-computer interfaces for communication and rehabilitation of people with motor impairment: A novel approach of the 21st century. Frontiers in Human Neuroscience, 12, 14. https://doi.org/10.3389/fnhum.2018.00014

Liu, Y.-H., Wang, S.-H., & Hu, M.-R. (2016). A self-paced P300 healthcare brain-computer interface system with SSVEP-based switching control and kernel FDA + SVM-based detector. Applied Sciences, 6, 142. https://doi.org/10.3390/app6050142

Liu, Y.-T., Lin, Y.-Y., Wu, S.-L., Chuang, C.-H., & Lin, C.-T. (2016). Brain dynamics in predicting driving fatigue using a recurrent self-evolving fuzzy neural network. IEEE Transactions on Neural Networks and Learning Systems, 27, 347-360. https://doi.org/10.1109/TNNLS.2015.2496330

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. (2018). A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. Journal of Neural Engineering, 15, 031005.

Lu, N., Li, T., Ren, X., & Miao, H. (2017). A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 566-576. https://doi.org/10.1109/TNSRE.2016.2601240

Lu, Y., Lyu, H., Richardson, A. G., Lucas, T. H., & Kuzum, D. (2016). Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Scientific Reports, 6, 33526. https://doi.org/10.1038/srep33526

Luu, T. P., He, Y., Brown, S., Nakagame, S., & Contreras-Vidal, J. L. (2016). Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. Journal of Neural Engineering, 13, 036006.

Ma, T., Li, H., Deng, L., Yang, H., Lv, X., Li, P., Li, F., Zhang, R., Liu, T., Yao, D., & Xu, P. (2017). The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential. Journal of Neural Engineering, 14(2), 026015. https://doi.org/10.1088/1741-2552/aa5d5f

Maddirala, A., & Shaik, R. A. (2016). Removal of EOG artifacts from single channel EEG signals using combined singular spectrum analysis and adaptive noise canceler. IEEE Sensors Journal, 16, 8279-8287. https://doi.org/10.1109/JSEN.2016.2560219

Majid Mehmood, R., Du, R., & Lee, H. J. (2017). Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors. IEEE Access, 5, 14797-14806. https://doi.org/10.1109/ACCESS.2017.2724555

Maksimenko, V. A., van Heukelum, S., Makarov, V. V., Kelderhuis, J., Lüttjohann, A., Koronovskii, A. A., Hramov, A. E., & van Luijtelaar, G. (2017). Absence seizure control by a brain computer interface. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02626-y

Martišius, I., & Damaševičius, R. (2016). A prototype SSVEP based real time BCI gaming system. Computational Intelligence and Neuroscience, 2016, 1-15. https://doi.org/10.1155/2016/3861425

Maskeliunas, R., Damasevicius, R., Martisius, I., & Vasiljevas, M. (2016). Consumer-grade EEG devices: Are they usable for control tasks? PeerJ, 4, e1746. https://doi.org/10.7717/peerj.1746

Meng, J., Zhang, S., Bekyo, A., Olsoe, J., Baxter, B., & He, B. (2016). Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Scientific Reports, 6, 38565. https://doi.org/10.1038/srep38565

Minguillon, J., Lopez-Gordo, M. A., & Pelayo, F. (2017). Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomedical Signal Processing and Control, 31, 407-418. https://doi.org/10.1016/j.bspc.2016.09.005

Mirkovic, B., Bleichner, M. G., de Vos, M., & Debener, S. (2016). Target speaker detection with concealed EEG around the ear. Frontiers in Neuroscience, 10, 349. https://doi.org/10.3389/fnins.2016.00349

Mrachacz-Kersting, N., Jiang, N., Stevenson, A. J. T., Niazi, I. K., Kostic, V., Pavlovi, A., Radovanovic, S., Djuric-Jovicic, M., Agosta, F., Dremstrup, K., & Farina, D. (2016). Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. Journal of Neurophysiology, 115(3), 1410-1421. https://doi.org/10.1152/jn.00918.2015

Nakanishi, M., Wang, Y., Chen, X., Wang, Y. T., Gao, X., & Jung, T. P. (2018). Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Transactions on Biomedical Engineering, 65, 104-112. https://doi.org/10.1109/TBME.2017.2694818

Nam, C. S., Nijholt, A., & Lotte, F. (2018). Brain-Computer Interfaces Handbook: Technological and Theoretical Advances (pp. 1-787). CRC Press.

Naros, G., Naros, I., Grimm, F., Ziemann, U., & Gharabaghi, A. (2016). Reinforcement learning of self-regulated sensorimotor β-oscillations improves motor performance. NeuroImage, 134, 142-152. https://doi.org/10.1016/j.neuroimage.2016.03.016

Naseer, N., Noori, F. M., Qureshi, N. K., & Hong, K.-S. (2016). Determining optimal feature-combination for LDA classification of functional near-infrared spectroscopy signals in brain-computer Interface application. Frontiers in Human Neuroscience, 10, 237. https://doi.org/10.3389/fnhum.2016.00237

Naseer, N., Qureshi, N. K., Noori, F. M., & Hong, K.-S. (2016). Analysis of different classification techniques for two-class functional near-infrared spectroscopy-based brain-computer interface. Computational Intelligence and Neuroscience, 2016, 5480760-11. https://doi.org/10.1155/2016/5480760

Nathan, K., & Contreras-Vidal, J. L. (2016). Negligible motion artifacts in scalp electroencephalography (EEG) during treadmill walking. Frontiers in Human Neuroscience, 9, 708. https://doi.org/10.3389/fnhum.2015.00708

Nguyen, H.-D., & Hong, K.-S. (2016). Bundled-optode implementation for 3D imaging in functional near-infrared spectroscopy. Biomedical Optics Express, 7, 3491-3507. https://doi.org/10.1364/BOE.7.003491

Nguyen, H.-D., Hong, K.-S., & Shin, Y.-I. (2016). Bundled-optode method in functional near-infrared spectroscopy. PLoS ONE, 11, e0165146. https://doi.org/10.1371/journal.pone.0165146

Nikolaev, A. R., Meghanathan, R. N., & van Leeuwen, C. (2016). Combining EEG and eye movement recording in free viewing: Pitfalls and possibilities. Brain and Cognition, 107, 55-83. https://doi.org/10.1016/j.bandc.2016.06.004

Pandarinath, C., Nuyujukian, P., Blabe, Ch. H., Sorice, B. L., Saab, J., Willett, F. R., Hochberg, L. R., Shenoy, K. V., & Henderson, J. M. (2017). High performance communication by people with paralysis using an intracortical brain-computer interface. eLife, 6. https://doi.org/10.7554/elife.18554

Paret, C., Kluetsch, R., Zaehringer, J., Ruf, M., Demirakca, T., Bohus, M., Ende, G., & Schmahl, C. (2016). Alterations of amygdala-prefrontal connectivity with real-time fMRI neurofeedback in BPD patients. Social Cognitive and Affective Neuroscience, 11, 952-960. https://doi.org/10.1093/scan/nsw016

Ramadan, R. A., & Vasilakos, A. V. (2017). Brain computer interface: control signals review. Neurocomputing, 223, 26-44. https://doi.org/10.1016/j.neucom.2016.10.024

Riener, R. (2016). The Cybathlon promotes the development of assistive technology for people with physical disabilities. J. NeuroEngineering Rehabil., 13, 49. https://doi.org/10.1186/s12984-016-0157-2

Sakhavi, S., Guan, C., & Yan, S. (2018). Learning temporal information for brain-computer Interface using convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems, 29, 5619-5629. https://doi.org/10.1109/TNNLS.2018.2789927

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., & Ball, T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping, 38(11), 5391-5420. https://doi.org/10.1002/hbm.23730

Schultze-Kraft, M., Birman, D., Rusconi, M., Allefeld, C., Görgen, K., Dähne, S., Blankertz, B., & Haynes, J.-D. (2016). The point of no return in vetoing self-initiated movements. Proceedings of the National Academy of Sciences, 113(4), 1080-1085. https://doi.org/10.1073/pnas.1513569112

Shin, J., Müller, K.-R., & Hwang, H.-J. (2016). Near-infrared spectroscopy (NIRS)-based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic. Scientific Reports, 6, 36203. https://doi.org/10.1038/srep36203

Siuly, Wang, H., & Zhang, Y. (2016). Detection of motor imagery EEG signals employing Naïve Bayes based learning process. Measurement, 86, 148-158.

Steyrl, D., Scherer, R., Faller, J., & Müller-Putz, G. R. (2016). Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: A practical and convenient non-linear classifier. Biomed. Eng.-Biomed. Tech., 61, 77-86. https://doi.org/10.1515/bmt-2014-0117

Sturm, I., Lapuschkin, S., Samek, W., & Müller, K.-R. (2016). Interpretable deep neural networks for single-trial EEG classification. Journal of Neuroscience Methods, 274, 141-145. https://doi.org/10.1016/j.jneumeth.2016.10.008

Tabar, Y. R., & Halici, U. (2017). A novel deep learning approach for classification of EEG motor imagery signals. Journal of Neural Engineering, 14, 016003.

Tang, Z., Li, C., & Sun, S. (2017). Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik, 130, 11-18. https://doi.org/10.1016/j.ijleo.2016.10.117

van Eyndhoven, S., Francart, T., & Bertrand, A. (2017). EEG-informed attended speaker extraction from recorded speech mixtures with application in neuro-steered hearing prostheses. IEEE Transactions on Biomedical Engineering, 64, 1045-1056. https://doi.org/10.1109/TBME.2016.2587382

Vansteensel, M. J., Pels, E. G. M., Bleichner, M. G., Branco, M. P., Denison, T., Freudenburg, Z. V., Gosselaar, P., Leinders, S., Ottens, T. H., Van Den Boom, M. A., Van Rijen, P. C., Aarnoutse, E. J., & Ramsey, N. F. (2016). Fully implanted brain-computer interface in a locked-in patient with ALS. New England Journal of Medicine, 375(21), 2060-2066. https://doi.org/10.1056/nejmoa1608085

von Luhmann, A., Wabnitz, H., Sander, T., & Muller, K. R. (2017). M3BA: A mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-based hybrid BCI and monitoring. IEEE Transactions on Biomedical Engineering, 64, 1199-1210. https://doi.org/10.1109/TBME.2016.2594127

Wang, H., Zhang, Y., Waytowich, N. R., Krusienski, D. J., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2016). Discriminative feature extraction via multivariate linear regression for SSVEP-based BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(5), 532-541. https://doi.org/10.1109/tnsre.2016.2519350

Wang, Y., Chen, X., Gao, X., & Gao, S. (2017). A benchmark dataset for SSVEP-based brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 1746-1752. https://doi.org/10.1109/TNSRE.2016.2627556

Wu, D. (2017). Online and offline domain adaptation for reducing BCI calibration effort. IEEE Transactions on human-machine Systems, 47, 550-563. https://doi.org/10.1109/THMS.2016.2608931

Xiang, Z., Liu, J., & Lee, C. (2016). A flexible three-dimensional electrode mesh: An enabling technology for wireless brain-computer interface prostheses. Microsystems & Nanoengineering, 2, 16012. https://doi.org/10.1038/micronano.2016.12

Xu, M. P., Xiao, X. L., Wang, Y. J., Qi, H. Z., Jung, T. P., & Ming, D. (2018). A brain-computer Interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Transactions on Biomedical Engineering, 65, 1166-1175. https://doi.org/10.1109/TBME.2018.2799661

Yang,, G.-Z., Bellingham, J., Dupont, P. E., Fischer, P., Floridi, L., Full, R., Jacobstein, N., Kumar, V., McNutt, M., Merrifield, R., Nelson, B. J., Scassellati, B., Taddeo, M., Taylor, R., Veloso, M., Wang, Z. L., & Wood, R. (2018). The grand challenges of Science Robotics. Science Robotics, 3(14). https://doi.org/10.1126/scirobotics.aar7650

Yin, E., Zeyl, T., Saab, R., Hu, D., Zhou, Z., & Chau, T. (2016). An auditory-tactile visual saccade-independent P300 brain-computer interface. International Journal of Neural Systems, 26, 1650001. https://doi.org/10.1142/S0129065716500015

Zafar, A., & Hong, K. S. (2017). Detection and classification of three-class initial dips from prefrontal cortex. Biomedical Optics Express, 8, 367-383. https://doi.org/10.1364/BOE.8.000367

Zander, T. O., Krol, L. R., Birbaumer, N. P., & Gramann, K. (2016). Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity. Proceedings of the National Academy of Sciences of the United States of America, 113, 14898-14903.

Zhang, J., Chen, M., Zhao, S., Hu, S., Shi, Z., & Cao, Y. (2016). ReliefF-based EEG sensor selection methods for emotion recognition. Sensors, 16, 1558. https://doi.org/10.3390/s16101558

Zhang, R., Li, Y., Yan, Y., Zhang, H., Wu, S., Yu, T., & Gu, Z. (2016). Control of a wheelchair in an indoor environment based on a brain-computer Interface and automated navigation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24, 128-139.

Zhang, Y., Liu, B., Ji, X., & Huang, D. (2017). Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Processing Letters, 45, 365-378. https://doi.org/10.1007/s11063-016-9530-1

Zhang, Y., Nam, C. S., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2019). Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Transactions on Cybernetics, 49, 3322-3332. https://doi.org/10.1109/TCYB.2018.2841847

Zhang, Y., Wang, Y., Jin, J., & Wang, X. (2017). Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. International Journal of Neural Systems, 27, 1650032. https://doi.org/10.1142/S0129065716500325

Zhang, Y., Wang, Y., Zhou, G., Jin, J., Wang, B., Wang, X., & Cichocki, A. (2018). Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Systems with Applications, 96, 302-310. https://doi.org/10.1016/j.eswa.2017.12.015

Zhang, Y., Zhou, G., Jin, J., Zhang, Y., Wang, X., & Cichocki, A. (2017). Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition. Neurocomputing, 225, 103-110. https://doi.org/10.1016/j.neucom.2016.11.008

Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., & Cichocki, A. (2016). Sparse Bayesian classification of EEG for brain-computer Interface. IEEE Transactions on Neural Networks and Learning Systems, 27, 2256-2267. https://doi.org/10.1109/TNNLS.2015.2476656

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...