Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29042559
PubMed Central
PMC5715004
DOI
10.1038/s41467-017-00929-2
PII: 10.1038/s41467-017-00929-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Metal halide perovskite nanocrystals are promising materials for a diverse range of applications, such as light-emitting devices and photodetectors. We demonstrate the bandgap tunability of strongly emitting CH3NH3PbBr3 nanocrystals synthesized at both room and elevated (60 °C) temperature through the variation of the precursor and ligand concentrations. We discuss in detail the role of two ligands, oleylamine and oleic acid, in terms of the coordination of the lead precursors and the nanocrystal surface. The growth mechanism of nanocrystals is elucidated by combining the experimental results with the principles of nucleation/growth models. The proposed formation mechanism of perovskite nanocrystals will be helpful for further studies in this field and can be used as a guide to improve the synthetic methods in the future.The development of perovskite nanocrystals is limited by poor mechanistic understanding of their growth. Here, the authors systematically study the ligand-assisted reprecipitation synthesis of CH3NH3PbBr3 nanocrystals, revealing the effect of precursor and ligand concentrations on bandgap tunability.
Zobrazit více v PubMed
Huang H, et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Mater. 2016;8:e328. doi: 10.1038/am.2016.167. DOI
Colella S, Mazzeo M, Rizzo A, Gigli G, Listorti A. The bright side of perovskites. J. Phys. Chem. Lett. 2016;7:4322–4334. doi: 10.1021/acs.jpclett.6b01799. PubMed DOI
Gonzalez-Carrero S, Galian RE, Perez-Prieto J. Organic-inorganic and all-inorganic lead halide nanoparticles. Opt. Express. 2016;24:A285–A301. doi: 10.1364/OE.24.00A285. PubMed DOI
Pedesseau L, et al. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano. 2016;10:9776–9786. doi: 10.1021/acsnano.6b05944. PubMed DOI
Veldhuis SA, et al. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016;28:6804–6834. doi: 10.1002/adma.201600669. PubMed DOI
Padilha LA, et al. Carrier multiplication in semiconductor nanocrystals: influence of size, shape, and composition. Acc. Chem. Res. 2013;46:1261–1269. doi: 10.1021/ar300228x. PubMed DOI
Park YS, Guo S, Makarov NS, Klimov VI. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano. 2015;9:10386–10393. doi: 10.1021/acsnano.5b04584. PubMed DOI
Hong WL, et al. Efficient low-temperature solution-processed lead-free perovskite infrared light-emitting diodes. Adv. Mater. 2016;28:8029–8036. doi: 10.1002/adma.201601024. PubMed DOI
Li X, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016;26:2435–2445. doi: 10.1002/adfm.201600109. DOI
Song J, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) Adv. Mater. 2015;27:7162–7167. doi: 10.1002/adma.201502567. PubMed DOI
Zhang X, et al. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 2016;26:4595–4600. doi: 10.1002/adfm.201600958. DOI
Zhang X, et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 2016;16:1415–1420. doi: 10.1021/acs.nanolett.5b04959. PubMed DOI
Huang H, et al. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 2016;7:5699–5703. doi: 10.1039/C6SC01758D. PubMed DOI PMC
Huang H, et al. Polyhedral oligomeric silsesquioxane enhances the brightness of perovskite nanocrystal-based green light-emitting devices. J. Phys. Chem. Lett. 2016;7:4398–4404. doi: 10.1021/acs.jpclett.6b02224. PubMed DOI
Wang N, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 2016;10:699–704. doi: 10.1038/nphoton.2016.185. DOI
Xing J, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano. 2016;10:6623–6630. doi: 10.1021/acsnano.6b01540. PubMed DOI
Zhang X, et al. Bright perovskite nanocrystal films for efficient light-emitting devices. J. Phys. Chem. Lett. 2016;7:4602–4610. doi: 10.1021/acs.jpclett.6b02073. PubMed DOI
Tan ZK, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014;9:687–692. doi: 10.1038/nnano.2014.149. PubMed DOI
Lin H, et al. Efficient near-infrared light-emitting diodes based on organometallic halide perovskite-poly(2-ethyl-2-oxazoline) nanocomposite thin films. Nanoscale. 2016;8:19846–19852. doi: 10.1039/C6NR08195A. PubMed DOI
Yassitepe E, et al. Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2016;26:8757–8763. doi: 10.1002/adfm.201604580. DOI
Lee J-W, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 2015;5:1501310. doi: 10.1002/aenm.201501310. DOI
Im JH, et al. Nanowire perovskite solar cell. Nano Lett. 2015;15:2120–2126. doi: 10.1021/acs.nanolett.5b00046. PubMed DOI
Mali SS, Shim CS, Hong CK. Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dots. NPG Asia Mater. 2015;7:e208. doi: 10.1038/am.2015.86. DOI
Sutton RJ, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016;6:1502458. doi: 10.1002/aenm.201502458. DOI
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009;131:6050–6051. doi: 10.1021/ja809598r. PubMed DOI
Swarnkar A, et al. Quantum dot-induced phase stabilization of alpha-CsPbI3 perovskite for high-efficiency photovoltaics. Science. 2016;354:92–95. doi: 10.1126/science.aag2700. PubMed DOI
Ramasamy P, et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016;52:2067–2070. doi: 10.1039/C5CC08643D. PubMed DOI
Zhuo S, Zhang J, Shi Y, Huang Y, Zhang B. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem. Int. Ed. 2015;54:5693–5696. doi: 10.1002/anie.201411956. PubMed DOI
Saidaminov MI, et al. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 2016;28:8144–8149. doi: 10.1002/adma.201601235. PubMed DOI
Dong Y, et al. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small. 2016;12:5622–5632. doi: 10.1002/smll.201602366. PubMed DOI
Xu W, et al. An ultrasensitive and reversible fluorescence sensor of humidity using perovskite CH3NH3PbBr3. J. Mater. Chem. C. 2016;4:9651–9655. doi: 10.1039/C6TC01075J. DOI
Schmidt LC, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014;136:850–853. doi: 10.1021/ja4109209. PubMed DOI
Gonzalez-Carrero S, Galian RE, Pérez-Prieto J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. J. Mater. Chem. A. 2015;3:9187–9193. doi: 10.1039/C4TA05878J. DOI
Gonzalez-Carrero S, et al. The luminescence of CH3NH3PbBr3 perovskite nanoparticles crests the summit and their photostability under wet conditions is enhanced. Small. 2016;12:5245–5250. doi: 10.1002/smll.201600209. PubMed DOI
Zhang F, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano. 2015;9:4533–4542. doi: 10.1021/acsnano.5b01154. PubMed DOI
Protesescu L, et al. Nano Lett. 2015. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut; pp. 3692–3696. PubMed PMC
Huang H, Susha AS, Kershaw SV, Hung TF, Rogach AL. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2015;2:1500194. doi: 10.1002/advs.201500194. PubMed DOI PMC
Sun C, et al. Efficient and stable white leds with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016;28:10088–10094. doi: 10.1002/adma.201603081. PubMed DOI
Wang HC, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem. Int. Ed. 2016;55:7924–7929. doi: 10.1002/anie.201603698. PubMed DOI
Huang S, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “Waterless” toluene. J. Am. Chem. Soc. 2016;138:5749–5752. doi: 10.1021/jacs.5b13101. PubMed DOI
Malgras V, et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J. Am. Chem. Soc. 2016;138:13874–13881. doi: 10.1021/jacs.6b05608. PubMed DOI
Huang H, et al. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces. 2015;7:28128–28133. doi: 10.1021/acsami.5b10373. PubMed DOI
Akkerman QA, et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016;138:1010–1016. doi: 10.1021/jacs.5b12124. PubMed DOI PMC
Sun S, Yuan D, Xu Y, Wang A, Deng Z. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano. 2016;10:3648–3657. doi: 10.1021/acsnano.5b08193. PubMed DOI
Luo B, et al. Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability. Angew. Chem. Int. Ed. 2016;55:8864–8868. doi: 10.1002/anie.201602236. PubMed DOI
Zhou Q, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016;28:9163–9168. doi: 10.1002/adma.201602651. PubMed DOI
Huang H, et al. Top-down fabrication of stable methylammonium lead halide perovskite nanocrystals employing a mixture of ligands as coordinating solvents. Angew. Chem. Int. Ed. 2017;56:9571–9576. doi: 10.1002/anie.201705595. PubMed DOI
Weidman MC, Seitz M, Stranks SD, Tisdale WA. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano. 2016;10:7830–7839. doi: 10.1021/acsnano.6b03496. PubMed DOI
Zhang D, et al. Ultrathin colloidal cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2016;138:13155–13158. doi: 10.1021/jacs.6b08373. PubMed DOI
Hintermayr VA, et al. Tuning the optical properties of perovskite nanoplatelets through composition and thickness by ligand-assisted exfoliation. Adv. Mater. 2016;28:9478–9485. doi: 10.1002/adma.201602897. PubMed DOI
Tong Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. 2016;55:13887–13892. doi: 10.1002/anie.201605909. PubMed DOI
Bekenstein Y, Koscher BA, Eaton SW, Yang P, Alivisatos AP. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015;137:16008–16011. doi: 10.1021/jacs.5b11199. PubMed DOI
Zhang D, Eaton SW, Yu Y, Dou L, Yang P. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015;137:9230–9233. doi: 10.1021/jacs.5b05404. PubMed DOI
Sichert JA, et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 2015;15:6521–6527. doi: 10.1021/acs.nanolett.5b02985. PubMed DOI
Tong Y, et al. Dilution-induced formation of hybrid perovskite nanoplatelets. ACS Nano. 2016;10:10936–10944. doi: 10.1021/acsnano.6b05649. PubMed DOI
Lignos I, et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett. 2016;16:1869–1877. doi: 10.1021/acs.nanolett.5b04981. PubMed DOI
Nayak PK, et al. Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nat. Commun. 2016;7:13303. doi: 10.1038/ncomms13303. PubMed DOI PMC
Pan A, et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano. 2016;10:7943–7954. doi: 10.1021/acsnano.6b03863. PubMed DOI
Tanaka K, et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 2003;127:619–623. doi: 10.1016/S0038-1098(03)00566-0. DOI
Li X, et al. Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv. Funct. Mater. 2016;26:5903–5912. doi: 10.1002/adfm.201601571. DOI
Dean J. A. (ed.). in Lange’s Handbook of Chemistry 15th edn (McGraw-Hill, Inc., 1999).
Hens Z, Martins JC. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem. Mater. 2013;25:1211–1221. doi: 10.1021/cm303361s. DOI
Boles MA, Ling D, Hyeon T, Talapin DV. The surface science of nanocrystals. Nat. Mater. 2016;15:141–153. doi: 10.1038/nmat4526. PubMed DOI
Piveteau L, et al. Structure of colloidal quantum dots from dynamic nuclear polarization surface enhanced NMR spectroscopy. J. Am. Chem. Soc. 2015;137:13964–13971. doi: 10.1021/jacs.5b09248. PubMed DOI
De Roo J, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano. 2016;10:2071–2081. doi: 10.1021/acsnano.5b06295. PubMed DOI
McCleverty, J. A., Meyer T. J. (eds). in Comprehensive Coordination Chemistry II: From Biology to Nanotechnology 2nd edn (Elsevier, 2004).
Jia Q, et al. Gelification: an effective measure for achieving differently sized biocompatible Fe3O4 nanocrystals through a single preparation recipe. J. Am. Chem. Soc. 2011;133:19512–19523. doi: 10.1021/ja2081263. PubMed DOI
Rempel JY, Bawendi MG, Jensen KF. Insights into the kinetics of semiconductor nanocrystal nucleation and growth. J. Am. Chem. Soc. 2009;131:4479–4489. doi: 10.1021/ja809156t. PubMed DOI
LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J. Phys. Chem. Lett. 1950;72:4847–4854.