Synthesis conditions influencing formation of MAPbBr3 perovskite nanoparticles prepared by the ligand-assisted precipitation method
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
32973262
PubMed Central
PMC7518261
DOI
10.1038/s41598-020-72826-6
PII: 10.1038/s41598-020-72826-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This work reports on an optimized procedure to synthesize methylammonium bromide perovskite nanoparticles. The ligand-assisted precipitation synthetic pathway for preparing nanoparticles is a cost-effective and promising method due to its ease of scalability, affordable equipment requirements and convenient operational temperatures. Nevertheless, there are several parameters that influence the resulting optical properties of the final nanomaterials. Here, the influence of the choice of solvent system, capping agents, temperature during precipitation and ratios of precursor chemicals is described, among other factors. Moreover, the colloidal stability and stability of the precursor solution is studied. All of the above-mentioned parameters were observed to strongly affect the resulting optical properties of the colloidal solutions. Various solvents, dispersion media, and selection of capping agents affected the formation of the perovskite structure, and thus qualitative and quantitative optimization of the synthetic procedure conditions resulted in nanoparticles of different dimensions and optical properties. The emission maxima of the nanoparticles were in the 508-519 nm range due to quantum confinement, as confirmed by transmission electron microscopy. This detailed study allows the selection of the best optimal conditions when using the ligand-assisted precipitation method as a powerful tool to fine-tune nanostructured perovskite features targeted for specific applications.
Zobrazit více v PubMed
Wei Z, Xing J. The rise of perovskite light-emitting diodes. J. Phys. Chem. Lett. 2019;10:3035–3042. doi: 10.1021/acs.jpclett.9b00277. PubMed DOI
Chen P, Xiong Z, Wu X, Shao M, Ma X, Xiong Z, Gao C. Highly efficient perovsktite light-emitting diodes incorporating full film coverage and bipolar charge injection. J. Phys. Chem. Lett. 2017;8:1810–1818. doi: 10.1021/acs.jpclett.7b00368. PubMed DOI
Ahn Y, Lee S, Kwak D-H, Kim M, Kim DY, Kim J, Park Y, Suh MC. Improving the efficiency of perovskite light emitting diode using polyvinylpyrrolidone as an interlayer. Appl. Surf. Sci. 2020;507:145071. doi: 10.1016/j.apsusc.2019.145071. DOI
Stylianakis MM, Maksudov T, Panagiotopoulos A, Kakavelakis G, Petridis K. Inorganic and hybrid perovskite based laser devices: a review. Materials. 2019;12:859. doi: 10.3390/ma12060859. PubMed DOI PMC
Gao Y, Wu Y, Lu H, Chen C, Liu Y, Bai X, Yang L, Yu WV, Dai Q, Zhang Y. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy. 2019;59:517–526. doi: 10.1016/j.nanoen.2019.02.070. DOI
Li J, Shen Y, Liu Y, Shi F, Ren X, Niu T, Zhao K, Liu SF. Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite. ACS Appl. Mater. Interfaces. 2017;9:19176–19183. doi: 10.1021/acsami.7b03229. PubMed DOI
Tonkaev P, Zograf G, Makarov S. Optical cooling of lead halide perovskite nanoparticles enhanced by Mie resonance. Nanoscale. 2019;11:17800. doi: 10.1039/C9NR03793D. PubMed DOI
González-Carrero S, Martinez-Sarti L, Sessolo M, Galian RE, Pérez-Prieto J. Highly photoluminescent, dense solid films from organic-capped CH3NH3PbBr3 perovskite colloids. J. Mater. Chem. C. 2018;6:6771–6777. doi: 10.1039/C8TC01344F. DOI
Xing J, Yan F, Zhao Y, Chen S, Yu H, Zhang Q, Zeng R, Demir HV, Sun X, Huan A, Xiong Q. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano. 2016;10:6623–6630. doi: 10.1021/acsnano.6b01540. PubMed DOI
Dong Y, Qiao T, Kim D, Parobek D, Rossi D, Son DH. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 2018;18:3716–3722. doi: 10.1021/acs.nanolett.8b00861. PubMed DOI
Jancik Prochazkova A, Salinas Y, Yumusak C, Scharber MC, Brüggemann O, Weiter M, Sariciftci NS, Krajcovic J, Kovalenko A. Controlling quantum confinement in luminescent perovskite nanoparticles for optoelectronic devices by the addition of water. ACS Appl. Nano Mater. 2020;3:1242–1249. doi: 10.1021/acsanm.9b01857. DOI
Weidman MC, Goodman AJ, Tisdale WA. Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. Chem. Mater. 2017;29:5019–5030. doi: 10.1021/acs.chemmater.7b01384. DOI
Feng J, Gong C, Gao H, Wen W, Gong Y, Jiang X, Zhang B, Wu Y, Wu Y, Fu H, Jiang L, Zhang X. Single crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 2018;1:404–410. doi: 10.1038/s41928-018-0101-5. DOI
Aharon S, Etgar L. Two dimensional organometal halide perovskite nanorods with tunable optical properties. Nano Lett. 2016;16:3230–3235. doi: 10.1021/acs.nanolett.6b00665. PubMed DOI
Paul T, Chatterjee BK, Besra N, Thakur S, Sarkar S, Chattopadhyay KK. Fabrication of all-inorganic CsPbBr3 perovskite nanocubes for enhanced green photoluminescence. Mater. Today Proc. 2018;5:2234–2240. doi: 10.1016/j.matpr.2017.09.224. DOI
Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br and I): novel optoelectronic materials showing bright emission with wide color Gamut. Nano Lett. 2015;15:3692–3696. doi: 10.1021/nl5048779. PubMed DOI PMC
Chen D, Chen X. Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. J. Mater. Chem. C. 2019;7:1413. doi: 10.1039/C8TC05545A. DOI
Schmidt LC, Pertegas A, Gonzalez-Carrero S, Malinkiewicz O, Agouram S, MinguezEspallargas G, Bolink HJ, Galian RE, Perez-Prieto J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014;136:850–853. doi: 10.1021/ja4109209. PubMed DOI
Pan A, He B, Fan X, Liu Z, Urban JJ, Alivisatos AP, He L, Liu Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid base and cesium precursors. ACS Nano. 2016;10:7943–7954. doi: 10.1021/acsnano.6b03863. PubMed DOI
Sun S, Yuan D, Xu Y, Wang A, Deng Z. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystal via reprecipitation process at room temperature. ACS Nano. 2016;10:3648–3657. doi: 10.1021/acsnano.5b08193. PubMed DOI
Demchyshyn, S., Roemer, J. M., Groiß, H.; Heilbrunner, H., Ulbricht, C., Apaydin, D., Böhm, A., Rütt, U., Bertram, F., Hesser, G., Scharber, M. C., Sariciftci, N. S., Nickel, B., Bauer, S., Głowacki, E.D., Kaltenbrunner, M. Confining metal-halide perovskites in nano-porous thin films. Sci. Adv. 3, No. e1700738 (2017). PubMed PMC
Hui LS, Beswick C, Getachew A, Heilbrunner H, Liang K, Hanta G, Arbi R, Munir M, Dawood H, IsikGoktas N, LaPierre R, Scharber MC, Sariciftci NS, Turak A. Reverse micelle templating route to ordered monodispersed spherical organo-lead halide perovskite nanoparticles for light emission. ACS Appl. Nano Mater. 2019;2:4121–4132. doi: 10.1021/acsanm.9b00585. DOI
Zhang F, Zhong H, Chen C, Wu X, Hu X, Huang H, Han J, Zou B, Dong Y. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano. 2015;9:4533–4542. doi: 10.1021/acsnano.5b01154. PubMed DOI
Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) Adv. Mater. 2015;27:7162–7167. doi: 10.1002/adma.201502567. PubMed DOI
Ilie, C. C., Guzman, F., Swanson, B. L., Evans, I. R., Costa, P. S., Teeter, J. D., Shekhirev, M., Benker, N., Sikich, S., Enders, A., Dowben, P. A., Sinitskii, A., Yost, A. J. Inkjet printable-photoactive all inorganic perovskite films with long effective photo carrier lifetimes. J. Phys.: Condens. Matter. 30, 18LT02 (2018). PubMed
Huang H, Susha AS, Kershaw SV, Hung TF, Rogach AL. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2015;2:1500194. doi: 10.1002/advs.201500194. PubMed DOI PMC
Jancik Prochazkova A, Demchyshyn S, Yumusak C, Másilko J, Brüggemann O, Weiter M, Kaltenbrunner M, Sariciftci NS, Krajcovic J, Salinas Y, Kovalenko A. Proteinogenic amino acid assisted preparation of highly luminescent hybrid perovskite nanoparticles. ACS Appl. Nano Mater. 2019;2:4267–4274. doi: 10.1021/acsanm.9b00725. DOI
Huang H, Raith J, Kershaw SV, Kalytchuk S, Tomanec O, Jing L, Susha AS, Zboril R, Rogach AL. Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nat Commun. 2017;8:996. doi: 10.1038/s41467-017-00929-2. PubMed DOI PMC
Krieg, F., Ochsenbein, S. T., Yakunin, S., ten Brinck, S., Aellen, P., Süess, A., Clerc, B., Guggisberg, D., Nazarenko, O., Shynkarenko, Y., Kumar, S., Shih, C.-J., Infante, I., Kovalenko, M. V. ACS Energy Lett. 3, 641–646 (2018). PubMed PMC
Jancik Prochazkova A, Salinas Y, Yumusak C, Brüggemann O, Weiter M, Sariciftci NS, Krajcovic J, Kovalenko A. Cyclic peptide stabilized lead halide perovskite nanoparticles. Sci. Rep. 2019;9:12966. doi: 10.1038/s41598-019-49643-7. PubMed DOI PMC
Gonzalez-Carrero S, Francés-Soriano L, González-Béjar M, Agouram S, Galian RE, Pérez-Prieto J. The luminescence of CH3NH3PbBr3 perovskite nanoparticles crests the summint and their photostability under wet conditions is enhanced. Small. 2016;12:5245–5250. doi: 10.1002/smll.201600209. PubMed DOI
Shi L, Hao H, Dong J, Zhong T, Zhang C, Hao J, Xing J, Liu H. Solvent engineering for intermediates phase, all-ambient-air-processed in organic-inorganic hybrid perovskite solar cells. Nanomaterials. 2019;9:915. doi: 10.3390/nano9070915. PubMed DOI PMC
Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014;7:2934–2938. doi: 10.1039/C4EE01624F. DOI
Kovalenko, A.; Pospisil, J.; Zmeskal, O.; Krajcovic, J.; Weiter, M. Ionic origin of a negative capacitance in lead halide perovskites. Phys. Status Solidi RRL. 11 (2017).
Lewandowska-Andralojc A, Marciniak B. Five major sins in fluorescence spectroscopy of light-harvesting hybrid materials. ACS Energy Lett. 2019;4:1898–1901. doi: 10.1021/acsenergylett.9b01146. DOI
Zhang Z-Y, Wang H-Y, Zhang Y-X, Hao Y-W, Sun C, Zhang Y, Gao B-R, Chen Q-D, Sun H-B. The role of trap-assisted recombination in luminescent properties of organometal halide CH3NH3PbBr3 perovskite films and quantum dots. Sci. Rep. 2016;6:27286. doi: 10.1038/srep27286. PubMed DOI PMC
Zheng W, Li Z, Zhang C, Wang B, Zhang Q, Wan Q, Kong L, Li L. Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 2019;12:1461–1465. doi: 10.1007/s12274-019-2407-7. DOI
Masi S, Colella S, Listorti A, Roiati V, Liscio A, Palermo V, Rizzo A, Gigli G. Growing perovskite into polymers for easy-processable optoelectronic devices. Sci. Rep. 2015;5:7725. doi: 10.1038/srep07725. PubMed DOI PMC
Saperstein D, Levin E. Fluorescence quenching of ultraviolet excited aromatic solutions by chloroform and several related chlorinated methanes. J. Chem. Phys. 1975;62:3560. doi: 10.1063/1.430948. DOI
Wang, Q., Liu, X.-D., Qiu, Y.-H., Chen, K., Zhou, L., Wang, Q.-Q. Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets. AIP Adv. 8, 025108 (2018).
Greczynski G, Hultman L. X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prof. Mater. Sci. 2020;107:100591. doi: 10.1016/j.pmatsci.2019.100591. DOI
Acik M, Park IK, Koritala RE, Lee G, Rosenberg RA. Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces. J. Mater. Chem. A. 2018;6:1423–1442. doi: 10.1039/C7TA10010H. DOI
González-Carrero S, Galian RE, Peréz-Prieto J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. J. Mater. Chem. A. 2015;3:9187–9193. doi: 10.1039/C4TA05878J. DOI
Yi N, Wang S, Duan Z, Wang K, Song Q, Xiao S. Tailoring the performances of lead halide perovskite devices with electron-beam irradiaton. Adv. Mater. 2017;29:1701636. doi: 10.1002/adma.201701636. PubMed DOI
Lashkor M, Rawson FJ, Preece JA, Mendes PM. Switching specific biomolecular interactions on surfaces under complex biological conditions. Analyst. 2014;139:5400–5408. doi: 10.1039/C4AN01225A. PubMed DOI PMC
Wang Y, Li L, Dai P, Yan L, Cao L, Gu X, Zhao X. Missing-node directed synthesis of hierarchical pores on a zirconium metal-organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction. J. Mater. Chem. A. 2017;5:22372–22379. doi: 10.1039/C7TA06060B. DOI
Sun H, Yang Z, Wei M, Sun W, Li X, Ye S, Zhao Y, Tan H, Kynaston EL, Schon TB, Yan H, Lu Z-H, Ozin GA, Sargent EH, Seferos DS. Chemically addressable perovskite nanocrystals for light-emitting applications. Adv. Mater. 2017;29:1701153. doi: 10.1002/adma.201701153. PubMed DOI
Théorêt A, Sandorfy C. The infrared spectra of solid methylammonium halides—II. Spectrochim. Acta Part A. 1967;23:519–542. doi: 10.1016/0584-8539(67)80310-6. DOI
Guo X, McCleese C, Kolodziej C, Samia ACS, Zhao Y, Burda C. Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. Dalton Trans. 2016;45:3806–3813. doi: 10.1039/C5DT04420K. PubMed DOI
Wang H, Zeng W, Xia R. Antisolvent diethyl ether as additive to enhance the performance of perovskite solar cells. Thin Solid Films. 2018;663:9–13. doi: 10.1016/j.tsf.2018.07.041. DOI