Synthesis conditions influencing formation of MAPbBr3 perovskite nanoparticles prepared by the ligand-assisted precipitation method

. 2020 Sep 24 ; 10 (1) : 15720. [epub] 20200924

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32973262
Odkazy

PubMed 32973262
PubMed Central PMC7518261
DOI 10.1038/s41598-020-72826-6
PII: 10.1038/s41598-020-72826-6
Knihovny.cz E-zdroje

This work reports on an optimized procedure to synthesize methylammonium bromide perovskite nanoparticles. The ligand-assisted precipitation synthetic pathway for preparing nanoparticles is a cost-effective and promising method due to its ease of scalability, affordable equipment requirements and convenient operational temperatures. Nevertheless, there are several parameters that influence the resulting optical properties of the final nanomaterials. Here, the influence of the choice of solvent system, capping agents, temperature during precipitation and ratios of precursor chemicals is described, among other factors. Moreover, the colloidal stability and stability of the precursor solution is studied. All of the above-mentioned parameters were observed to strongly affect the resulting optical properties of the colloidal solutions. Various solvents, dispersion media, and selection of capping agents affected the formation of the perovskite structure, and thus qualitative and quantitative optimization of the synthetic procedure conditions resulted in nanoparticles of different dimensions and optical properties. The emission maxima of the nanoparticles were in the 508-519 nm range due to quantum confinement, as confirmed by transmission electron microscopy. This detailed study allows the selection of the best optimal conditions when using the ligand-assisted precipitation method as a powerful tool to fine-tune nanostructured perovskite features targeted for specific applications.

Zobrazit více v PubMed

Wei Z, Xing J. The rise of perovskite light-emitting diodes. J. Phys. Chem. Lett. 2019;10:3035–3042. doi: 10.1021/acs.jpclett.9b00277. PubMed DOI

Chen P, Xiong Z, Wu X, Shao M, Ma X, Xiong Z, Gao C. Highly efficient perovsktite light-emitting diodes incorporating full film coverage and bipolar charge injection. J. Phys. Chem. Lett. 2017;8:1810–1818. doi: 10.1021/acs.jpclett.7b00368. PubMed DOI

Ahn Y, Lee S, Kwak D-H, Kim M, Kim DY, Kim J, Park Y, Suh MC. Improving the efficiency of perovskite light emitting diode using polyvinylpyrrolidone as an interlayer. Appl. Surf. Sci. 2020;507:145071. doi: 10.1016/j.apsusc.2019.145071. DOI

Stylianakis MM, Maksudov T, Panagiotopoulos A, Kakavelakis G, Petridis K. Inorganic and hybrid perovskite based laser devices: a review. Materials. 2019;12:859. doi: 10.3390/ma12060859. PubMed DOI PMC

Gao Y, Wu Y, Lu H, Chen C, Liu Y, Bai X, Yang L, Yu WV, Dai Q, Zhang Y. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy. 2019;59:517–526. doi: 10.1016/j.nanoen.2019.02.070. DOI

Li J, Shen Y, Liu Y, Shi F, Ren X, Niu T, Zhao K, Liu SF. Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite. ACS Appl. Mater. Interfaces. 2017;9:19176–19183. doi: 10.1021/acsami.7b03229. PubMed DOI

Tonkaev P, Zograf G, Makarov S. Optical cooling of lead halide perovskite nanoparticles enhanced by Mie resonance. Nanoscale. 2019;11:17800. doi: 10.1039/C9NR03793D. PubMed DOI

González-Carrero S, Martinez-Sarti L, Sessolo M, Galian RE, Pérez-Prieto J. Highly photoluminescent, dense solid films from organic-capped CH3NH3PbBr3 perovskite colloids. J. Mater. Chem. C. 2018;6:6771–6777. doi: 10.1039/C8TC01344F. DOI

Xing J, Yan F, Zhao Y, Chen S, Yu H, Zhang Q, Zeng R, Demir HV, Sun X, Huan A, Xiong Q. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano. 2016;10:6623–6630. doi: 10.1021/acsnano.6b01540. PubMed DOI

Dong Y, Qiao T, Kim D, Parobek D, Rossi D, Son DH. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 2018;18:3716–3722. doi: 10.1021/acs.nanolett.8b00861. PubMed DOI

Jancik Prochazkova A, Salinas Y, Yumusak C, Scharber MC, Brüggemann O, Weiter M, Sariciftci NS, Krajcovic J, Kovalenko A. Controlling quantum confinement in luminescent perovskite nanoparticles for optoelectronic devices by the addition of water. ACS Appl. Nano Mater. 2020;3:1242–1249. doi: 10.1021/acsanm.9b01857. DOI

Weidman MC, Goodman AJ, Tisdale WA. Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. Chem. Mater. 2017;29:5019–5030. doi: 10.1021/acs.chemmater.7b01384. DOI

Feng J, Gong C, Gao H, Wen W, Gong Y, Jiang X, Zhang B, Wu Y, Wu Y, Fu H, Jiang L, Zhang X. Single crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 2018;1:404–410. doi: 10.1038/s41928-018-0101-5. DOI

Aharon S, Etgar L. Two dimensional organometal halide perovskite nanorods with tunable optical properties. Nano Lett. 2016;16:3230–3235. doi: 10.1021/acs.nanolett.6b00665. PubMed DOI

Paul T, Chatterjee BK, Besra N, Thakur S, Sarkar S, Chattopadhyay KK. Fabrication of all-inorganic CsPbBr3 perovskite nanocubes for enhanced green photoluminescence. Mater. Today Proc. 2018;5:2234–2240. doi: 10.1016/j.matpr.2017.09.224. DOI

Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br and I): novel optoelectronic materials showing bright emission with wide color Gamut. Nano Lett. 2015;15:3692–3696. doi: 10.1021/nl5048779. PubMed DOI PMC

Chen D, Chen X. Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. J. Mater. Chem. C. 2019;7:1413. doi: 10.1039/C8TC05545A. DOI

Schmidt LC, Pertegas A, Gonzalez-Carrero S, Malinkiewicz O, Agouram S, MinguezEspallargas G, Bolink HJ, Galian RE, Perez-Prieto J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014;136:850–853. doi: 10.1021/ja4109209. PubMed DOI

Pan A, He B, Fan X, Liu Z, Urban JJ, Alivisatos AP, He L, Liu Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid base and cesium precursors. ACS Nano. 2016;10:7943–7954. doi: 10.1021/acsnano.6b03863. PubMed DOI

Sun S, Yuan D, Xu Y, Wang A, Deng Z. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystal via reprecipitation process at room temperature. ACS Nano. 2016;10:3648–3657. doi: 10.1021/acsnano.5b08193. PubMed DOI

Demchyshyn, S., Roemer, J. M., Groiß, H.; Heilbrunner, H., Ulbricht, C., Apaydin, D., Böhm, A., Rütt, U., Bertram, F., Hesser, G., Scharber, M. C., Sariciftci, N. S., Nickel, B., Bauer, S., Głowacki, E.D., Kaltenbrunner, M. Confining metal-halide perovskites in nano-porous thin films. Sci. Adv. 3, No. e1700738 (2017). PubMed PMC

Hui LS, Beswick C, Getachew A, Heilbrunner H, Liang K, Hanta G, Arbi R, Munir M, Dawood H, IsikGoktas N, LaPierre R, Scharber MC, Sariciftci NS, Turak A. Reverse micelle templating route to ordered monodispersed spherical organo-lead halide perovskite nanoparticles for light emission. ACS Appl. Nano Mater. 2019;2:4121–4132. doi: 10.1021/acsanm.9b00585. DOI

Zhang F, Zhong H, Chen C, Wu X, Hu X, Huang H, Han J, Zou B, Dong Y. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano. 2015;9:4533–4542. doi: 10.1021/acsnano.5b01154. PubMed DOI

Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) Adv. Mater. 2015;27:7162–7167. doi: 10.1002/adma.201502567. PubMed DOI

Ilie, C. C., Guzman, F., Swanson, B. L., Evans, I. R., Costa, P. S., Teeter, J. D., Shekhirev, M., Benker, N., Sikich, S., Enders, A., Dowben, P. A., Sinitskii, A., Yost, A. J. Inkjet printable-photoactive all inorganic perovskite films with long effective photo carrier lifetimes. J. Phys.: Condens. Matter. 30, 18LT02 (2018). PubMed

Huang H, Susha AS, Kershaw SV, Hung TF, Rogach AL. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2015;2:1500194. doi: 10.1002/advs.201500194. PubMed DOI PMC

Jancik Prochazkova A, Demchyshyn S, Yumusak C, Másilko J, Brüggemann O, Weiter M, Kaltenbrunner M, Sariciftci NS, Krajcovic J, Salinas Y, Kovalenko A. Proteinogenic amino acid assisted preparation of highly luminescent hybrid perovskite nanoparticles. ACS Appl. Nano Mater. 2019;2:4267–4274. doi: 10.1021/acsanm.9b00725. DOI

Huang H, Raith J, Kershaw SV, Kalytchuk S, Tomanec O, Jing L, Susha AS, Zboril R, Rogach AL. Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nat Commun. 2017;8:996. doi: 10.1038/s41467-017-00929-2. PubMed DOI PMC

Krieg, F., Ochsenbein, S. T., Yakunin, S., ten Brinck, S., Aellen, P., Süess, A., Clerc, B., Guggisberg, D., Nazarenko, O., Shynkarenko, Y., Kumar, S., Shih, C.-J., Infante, I., Kovalenko, M. V. ACS Energy Lett. 3, 641–646 (2018). PubMed PMC

Jancik Prochazkova A, Salinas Y, Yumusak C, Brüggemann O, Weiter M, Sariciftci NS, Krajcovic J, Kovalenko A. Cyclic peptide stabilized lead halide perovskite nanoparticles. Sci. Rep. 2019;9:12966. doi: 10.1038/s41598-019-49643-7. PubMed DOI PMC

Gonzalez-Carrero S, Francés-Soriano L, González-Béjar M, Agouram S, Galian RE, Pérez-Prieto J. The luminescence of CH3NH3PbBr3 perovskite nanoparticles crests the summint and their photostability under wet conditions is enhanced. Small. 2016;12:5245–5250. doi: 10.1002/smll.201600209. PubMed DOI

Shi L, Hao H, Dong J, Zhong T, Zhang C, Hao J, Xing J, Liu H. Solvent engineering for intermediates phase, all-ambient-air-processed in organic-inorganic hybrid perovskite solar cells. Nanomaterials. 2019;9:915. doi: 10.3390/nano9070915. PubMed DOI PMC

Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014;7:2934–2938. doi: 10.1039/C4EE01624F. DOI

Kovalenko, A.; Pospisil, J.; Zmeskal, O.; Krajcovic, J.; Weiter, M. Ionic origin of a negative capacitance in lead halide perovskites. Phys. Status Solidi RRL. 11 (2017).

Lewandowska-Andralojc A, Marciniak B. Five major sins in fluorescence spectroscopy of light-harvesting hybrid materials. ACS Energy Lett. 2019;4:1898–1901. doi: 10.1021/acsenergylett.9b01146. DOI

Zhang Z-Y, Wang H-Y, Zhang Y-X, Hao Y-W, Sun C, Zhang Y, Gao B-R, Chen Q-D, Sun H-B. The role of trap-assisted recombination in luminescent properties of organometal halide CH3NH3PbBr3 perovskite films and quantum dots. Sci. Rep. 2016;6:27286. doi: 10.1038/srep27286. PubMed DOI PMC

Zheng W, Li Z, Zhang C, Wang B, Zhang Q, Wan Q, Kong L, Li L. Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 2019;12:1461–1465. doi: 10.1007/s12274-019-2407-7. DOI

Masi S, Colella S, Listorti A, Roiati V, Liscio A, Palermo V, Rizzo A, Gigli G. Growing perovskite into polymers for easy-processable optoelectronic devices. Sci. Rep. 2015;5:7725. doi: 10.1038/srep07725. PubMed DOI PMC

Saperstein D, Levin E. Fluorescence quenching of ultraviolet excited aromatic solutions by chloroform and several related chlorinated methanes. J. Chem. Phys. 1975;62:3560. doi: 10.1063/1.430948. DOI

Wang, Q., Liu, X.-D., Qiu, Y.-H., Chen, K., Zhou, L., Wang, Q.-Q. Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets. AIP Adv. 8, 025108 (2018).

Greczynski G, Hultman L. X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prof. Mater. Sci. 2020;107:100591. doi: 10.1016/j.pmatsci.2019.100591. DOI

Acik M, Park IK, Koritala RE, Lee G, Rosenberg RA. Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces. J. Mater. Chem. A. 2018;6:1423–1442. doi: 10.1039/C7TA10010H. DOI

González-Carrero S, Galian RE, Peréz-Prieto J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. J. Mater. Chem. A. 2015;3:9187–9193. doi: 10.1039/C4TA05878J. DOI

Yi N, Wang S, Duan Z, Wang K, Song Q, Xiao S. Tailoring the performances of lead halide perovskite devices with electron-beam irradiaton. Adv. Mater. 2017;29:1701636. doi: 10.1002/adma.201701636. PubMed DOI

Lashkor M, Rawson FJ, Preece JA, Mendes PM. Switching specific biomolecular interactions on surfaces under complex biological conditions. Analyst. 2014;139:5400–5408. doi: 10.1039/C4AN01225A. PubMed DOI PMC

Wang Y, Li L, Dai P, Yan L, Cao L, Gu X, Zhao X. Missing-node directed synthesis of hierarchical pores on a zirconium metal-organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction. J. Mater. Chem. A. 2017;5:22372–22379. doi: 10.1039/C7TA06060B. DOI

Sun H, Yang Z, Wei M, Sun W, Li X, Ye S, Zhao Y, Tan H, Kynaston EL, Schon TB, Yan H, Lu Z-H, Ozin GA, Sargent EH, Seferos DS. Chemically addressable perovskite nanocrystals for light-emitting applications. Adv. Mater. 2017;29:1701153. doi: 10.1002/adma.201701153. PubMed DOI

Théorêt A, Sandorfy C. The infrared spectra of solid methylammonium halides—II. Spectrochim. Acta Part A. 1967;23:519–542. doi: 10.1016/0584-8539(67)80310-6. DOI

Guo X, McCleese C, Kolodziej C, Samia ACS, Zhao Y, Burda C. Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. Dalton Trans. 2016;45:3806–3813. doi: 10.1039/C5DT04420K. PubMed DOI

Wang H, Zeng W, Xia R. Antisolvent diethyl ether as additive to enhance the performance of perovskite solar cells. Thin Solid Films. 2018;663:9–13. doi: 10.1016/j.tsf.2018.07.041. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...