Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System

. 2017 Nov 16 ; 17 (11) : . [epub] 20171116

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29144389

Baker's yeast (Saccharomyces cerevisiae) represents a very popular single-celled eukaryotic model organism which has been studied extensively by various methods and whose genome has been completely sequenced. It was also among the first living organisms that were manipulated by optical tweezers and it is currently a frequent subject of optical micromanipulation experiments. We built a microfluidic system for optical trapping experiments with individual cells and used it for the assessment of cell tolerance to phototoxic stress. Using optical tweezers with the wavelength of 1064 nm, we trapped individual Saccharomyces cerevisiae cells for 15 min and, subsequently, observed their stress response in specially designed microfluidic chambers over time periods of several hours by time-lapse video-microscopy. We determined the time between successive bud formations after the exposure to the trapping light, took account of damaged cells, and calculated the population doubling period and cell areas for increasing trapping power at a constant trapping time. Our approach represents an attractive, versatile microfluidic platform for quantitative optical trapping experiments with living cells. We demonstrate its application potential by assessing the limits for safe, non-invasive optical trapping of Saccharomyces cerevisiae with infrared laser light.

Zobrazit více v PubMed

Legras J.-L., Merdinoglu D., Cornuet J.-M., Karst F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 2007;16:2091–2102. doi: 10.1111/j.1365-294X.2007.03266.x. PubMed DOI

Gofieau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., et al. Life with 6000 Genes. Science. 1996;274:546–567. doi: 10.1126/science.274.5287.546. PubMed DOI

Costanzo M., Baryshnikova A., Bellay J., Kim Y., Spear E.D., Sevier C.S., Ding H., Koh J.L.Y., Toufighi K., Mostafavi S., et al. The genetic landscape of a cell. Science. 2010;327:425–431. doi: 10.1126/science.1180823. PubMed DOI PMC

Ashkin A., Dziedzic J., Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330:769–771. doi: 10.1038/330769a0. PubMed DOI

Xie C., Chen D., Li Y.-Q. Raman sorting and identification of single living micro-organisms with optical tweezers. Opt. Lett. 2005;30:1800–1802. doi: 10.1364/OL.30.001800. PubMed DOI

Creely C.M., Singh G.P., Petrov D. Dual wavelength optical tweezers for confocal Raman spectroscopy. Opt. Commun. 2005;245:465–470. doi: 10.1016/j.optcom.2004.10.011. DOI

Ando J., Bautista G., Smith N., Fujita K., Daria V.R. Optical trapping and surgery of living yeast cells using a single laser. Rev. Sci. Instrum. 2008;79:103705. doi: 10.1063/1.2999542. PubMed DOI

Eriksson E., Enger J., Nordlander B., Erjavec N., Ramser K., Goksör M., Hohmann S., Nystrom T., Hanstorp D. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip. 2007;7:71–76. doi: 10.1039/B613650H. PubMed DOI

Singh G.P., Creely C.M., Volpe G., Grötsch H., Petrov D. Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy. Anal. Chem. 2005;77:2564–2568. doi: 10.1021/ac048359j. PubMed DOI

Eriksson E., Scrimgeour J., Graneli A., Ramser K., Wellander R., Enger J., Hanstorp D., Goksör M. Optical manipulation and microfluidics for studies of single cell dynamics. J. Opt. A. 2007;9:113–121. doi: 10.1088/1464-4258/9/8/S02. DOI

Eriksson E., Sott K., Lundqvist F., Sveningsson M., Scrimgeour J., Hanstorp D., Goksör M., Graneli A. A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab Chip. 2010;10:617–625. doi: 10.1039/B913587A. PubMed DOI

Castelain M., Pignon F., Piau J.-M., Magnin A., Mercier-Bonin M., Schmitz P. Removal forces and adhesion properties of Saccharomyces cerevisiae on glass substrates probed by optical tweezer. J. Chem. Phys. 2007;127:135104. doi: 10.1063/1.2772270. PubMed DOI

Castelain M., Rouxhet P.G., Pignon F., Magnin A., Piau J.-M. Single-cell adhesion probed in-situ using optical tweezers: A case study with Saccharomyces cerevisiae. J. Appl. Phys. 2012;111:114701. doi: 10.1063/1.4723566. DOI

Wang X., Chen S., Kong M., Wang Z., Costa K.D., Li R.A., Sun D. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip. 2011;11:3656–3662. doi: 10.1039/c1lc20653b. PubMed DOI

Gomes De Mesquita D.S., Shaw J., Grimbergen J.A., Buys M.A., Dewi L., Woldringh C.L. Vacuole segregation in the Saccharomyces cerevisiae vac2-1 mutant: Structural and biochemical quantification of the segregation defect and formation of new vacuoles. Yeast. 1997;13:999–1008. doi: 10.1002/(SICI)1097-0061(19970915)13:11<999::AID-YEA151>3.0.CO;2-0. PubMed DOI

Luca A.C.D., Volpe G., Drets A.M., Geli M.I., Pesce G., Rusciano G., Sasso A., Petrov D. Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers. Opt. Express. 2007;15:7922–7932. doi: 10.1364/OE.15.007922. PubMed DOI

Li Y., Wang G., Yao H.L., Liu J., Li Y.Q. Dual-trap Raman tweezers for probing dynamics and heterogeneity of interacting microbial cells. J. Biomed. Opt. 2010;15:067008. doi: 10.1117/1.3526357. PubMed DOI

Charrunchon S., Limtrakul J., Chattham N. Growth pattern of yeast cells studied under line optical tweezers. Int. J. Appl. Phys. Math. 2013;3:198–202. doi: 10.7763/IJAPM.2013.V3.205. DOI

Grimbergen J.A., Visscher K., De Mesquita D.S.G., Brakenhoff G.J. Isolation of single yeast cells by optical trapping. Yeast. 1993;9:723–732. doi: 10.1002/yea.320090706. PubMed DOI

Aabo T., Perch-Nielsen I.R., Dam J.S., Palima D.Z., Siegumfeldt H., Glückstad J., Arneborg N. Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae. J. Biomed. Opt. 2010;15:041505. doi: 10.1117/1.3430731. PubMed DOI

Sacconi L., Tolić-Nørrelykke I.M., Stringari C., Ántolini R., Pavone F.S. Optical micromanipulations inside yeast cells. Appl. Opt. 2005;44:2001–2007. doi: 10.1364/AO.44.002001. PubMed DOI

Neuman K.C., Chadd E.H., Liou G.F., Bergman K., Block S.M. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 1999;77:2856–2863. doi: 10.1016/S0006-3495(99)77117-1. PubMed DOI PMC

Leitz G., Fällman E., Tuck S., Axner O. Stress response in Caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence. Biophys. J. 2002;82:2224–2231. doi: 10.1016/S0006-3495(02)75568-9. PubMed DOI PMC

Pilát Z., Ježek J., Šerý M., Trtílek M., Nedbal L., Zemánek P. Optical trapping of microalgae at 735–1064 nm: Photodamage assessment. J. Photochem. Photobiol. B. 2013;121:27–31. doi: 10.1016/j.jphotobiol.2013.02.006. PubMed DOI

Misawa H., Koshioka M., Sasaki K., Kitamura N., Masuhara H. Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water. J. Appl. Phys. 1991;70:3829–3836. doi: 10.1063/1.350344. DOI

Liu Y., Cheng D.K., Sonek G.J., Berns M.W., Chapman C.F., Tromberg B.J. Evidence for localized cell heating induced by infrared optical tweezers. Biophys. J. 1995;68:2137–2144. doi: 10.1016/S0006-3495(95)80396-6. PubMed DOI PMC

Peterman E.J.G., Gittes F., Schmidt C.F. Laser-induced heating in optical traps. Biophys. J. 2003;84:1308–1316. doi: 10.1016/S0006-3495(03)74946-7. PubMed DOI PMC

Snook R.D., Harvey T.J., Faria E.C., Gardner P. Raman tweezers and their application to the study of singly trapped eukaryotic cells. Integr. Biol. 2009;1:43–52. doi: 10.1039/B815253E. PubMed DOI

Feder M.E., Hofmann G.E. Heat-Shock Proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Ann. Rev. Physiol. 1999;61:243–282. doi: 10.1146/annurev.physiol.61.1.243. PubMed DOI

Singh G.P., Volpe G., Creely C.M., Grotsch H., Geli I.M., Petrov D. The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy. J. Raman Spectrosc. 2006;37:858–864. doi: 10.1002/jrs.1520. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress

. 2018 May 18 ; 18 (5) : . [epub] 20180518

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...