Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29144389
PubMed Central
PMC5712812
DOI
10.3390/s17112640
PII: s17112640
Knihovny.cz E-zdroje
- Klíčová slova
- Saccharomyces cerevisiae, laser, microfluidics, optical trapping, phototoxicity,
- MeSH
- mikrofluidika MeSH
- mikromanipulace MeSH
- optická pinzeta MeSH
- Saccharomyces cerevisiae * MeSH
- Publikační typ
- časopisecké články MeSH
Baker's yeast (Saccharomyces cerevisiae) represents a very popular single-celled eukaryotic model organism which has been studied extensively by various methods and whose genome has been completely sequenced. It was also among the first living organisms that were manipulated by optical tweezers and it is currently a frequent subject of optical micromanipulation experiments. We built a microfluidic system for optical trapping experiments with individual cells and used it for the assessment of cell tolerance to phototoxic stress. Using optical tweezers with the wavelength of 1064 nm, we trapped individual Saccharomyces cerevisiae cells for 15 min and, subsequently, observed their stress response in specially designed microfluidic chambers over time periods of several hours by time-lapse video-microscopy. We determined the time between successive bud formations after the exposure to the trapping light, took account of damaged cells, and calculated the population doubling period and cell areas for increasing trapping power at a constant trapping time. Our approach represents an attractive, versatile microfluidic platform for quantitative optical trapping experiments with living cells. We demonstrate its application potential by assessing the limits for safe, non-invasive optical trapping of Saccharomyces cerevisiae with infrared laser light.
Zobrazit více v PubMed
Legras J.-L., Merdinoglu D., Cornuet J.-M., Karst F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 2007;16:2091–2102. doi: 10.1111/j.1365-294X.2007.03266.x. PubMed DOI
Gofieau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., et al. Life with 6000 Genes. Science. 1996;274:546–567. doi: 10.1126/science.274.5287.546. PubMed DOI
Costanzo M., Baryshnikova A., Bellay J., Kim Y., Spear E.D., Sevier C.S., Ding H., Koh J.L.Y., Toufighi K., Mostafavi S., et al. The genetic landscape of a cell. Science. 2010;327:425–431. doi: 10.1126/science.1180823. PubMed DOI PMC
Ashkin A., Dziedzic J., Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330:769–771. doi: 10.1038/330769a0. PubMed DOI
Xie C., Chen D., Li Y.-Q. Raman sorting and identification of single living micro-organisms with optical tweezers. Opt. Lett. 2005;30:1800–1802. doi: 10.1364/OL.30.001800. PubMed DOI
Creely C.M., Singh G.P., Petrov D. Dual wavelength optical tweezers for confocal Raman spectroscopy. Opt. Commun. 2005;245:465–470. doi: 10.1016/j.optcom.2004.10.011. DOI
Ando J., Bautista G., Smith N., Fujita K., Daria V.R. Optical trapping and surgery of living yeast cells using a single laser. Rev. Sci. Instrum. 2008;79:103705. doi: 10.1063/1.2999542. PubMed DOI
Eriksson E., Enger J., Nordlander B., Erjavec N., Ramser K., Goksör M., Hohmann S., Nystrom T., Hanstorp D. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip. 2007;7:71–76. doi: 10.1039/B613650H. PubMed DOI
Singh G.P., Creely C.M., Volpe G., Grötsch H., Petrov D. Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy. Anal. Chem. 2005;77:2564–2568. doi: 10.1021/ac048359j. PubMed DOI
Eriksson E., Scrimgeour J., Graneli A., Ramser K., Wellander R., Enger J., Hanstorp D., Goksör M. Optical manipulation and microfluidics for studies of single cell dynamics. J. Opt. A. 2007;9:113–121. doi: 10.1088/1464-4258/9/8/S02. DOI
Eriksson E., Sott K., Lundqvist F., Sveningsson M., Scrimgeour J., Hanstorp D., Goksör M., Graneli A. A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab Chip. 2010;10:617–625. doi: 10.1039/B913587A. PubMed DOI
Castelain M., Pignon F., Piau J.-M., Magnin A., Mercier-Bonin M., Schmitz P. Removal forces and adhesion properties of Saccharomyces cerevisiae on glass substrates probed by optical tweezer. J. Chem. Phys. 2007;127:135104. doi: 10.1063/1.2772270. PubMed DOI
Castelain M., Rouxhet P.G., Pignon F., Magnin A., Piau J.-M. Single-cell adhesion probed in-situ using optical tweezers: A case study with Saccharomyces cerevisiae. J. Appl. Phys. 2012;111:114701. doi: 10.1063/1.4723566. DOI
Wang X., Chen S., Kong M., Wang Z., Costa K.D., Li R.A., Sun D. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip. 2011;11:3656–3662. doi: 10.1039/c1lc20653b. PubMed DOI
Gomes De Mesquita D.S., Shaw J., Grimbergen J.A., Buys M.A., Dewi L., Woldringh C.L. Vacuole segregation in the Saccharomyces cerevisiae vac2-1 mutant: Structural and biochemical quantification of the segregation defect and formation of new vacuoles. Yeast. 1997;13:999–1008. doi: 10.1002/(SICI)1097-0061(19970915)13:11<999::AID-YEA151>3.0.CO;2-0. PubMed DOI
Luca A.C.D., Volpe G., Drets A.M., Geli M.I., Pesce G., Rusciano G., Sasso A., Petrov D. Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers. Opt. Express. 2007;15:7922–7932. doi: 10.1364/OE.15.007922. PubMed DOI
Li Y., Wang G., Yao H.L., Liu J., Li Y.Q. Dual-trap Raman tweezers for probing dynamics and heterogeneity of interacting microbial cells. J. Biomed. Opt. 2010;15:067008. doi: 10.1117/1.3526357. PubMed DOI
Charrunchon S., Limtrakul J., Chattham N. Growth pattern of yeast cells studied under line optical tweezers. Int. J. Appl. Phys. Math. 2013;3:198–202. doi: 10.7763/IJAPM.2013.V3.205. DOI
Grimbergen J.A., Visscher K., De Mesquita D.S.G., Brakenhoff G.J. Isolation of single yeast cells by optical trapping. Yeast. 1993;9:723–732. doi: 10.1002/yea.320090706. PubMed DOI
Aabo T., Perch-Nielsen I.R., Dam J.S., Palima D.Z., Siegumfeldt H., Glückstad J., Arneborg N. Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae. J. Biomed. Opt. 2010;15:041505. doi: 10.1117/1.3430731. PubMed DOI
Sacconi L., Tolić-Nørrelykke I.M., Stringari C., Ántolini R., Pavone F.S. Optical micromanipulations inside yeast cells. Appl. Opt. 2005;44:2001–2007. doi: 10.1364/AO.44.002001. PubMed DOI
Neuman K.C., Chadd E.H., Liou G.F., Bergman K., Block S.M. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 1999;77:2856–2863. doi: 10.1016/S0006-3495(99)77117-1. PubMed DOI PMC
Leitz G., Fällman E., Tuck S., Axner O. Stress response in Caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence. Biophys. J. 2002;82:2224–2231. doi: 10.1016/S0006-3495(02)75568-9. PubMed DOI PMC
Pilát Z., Ježek J., Šerý M., Trtílek M., Nedbal L., Zemánek P. Optical trapping of microalgae at 735–1064 nm: Photodamage assessment. J. Photochem. Photobiol. B. 2013;121:27–31. doi: 10.1016/j.jphotobiol.2013.02.006. PubMed DOI
Misawa H., Koshioka M., Sasaki K., Kitamura N., Masuhara H. Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water. J. Appl. Phys. 1991;70:3829–3836. doi: 10.1063/1.350344. DOI
Liu Y., Cheng D.K., Sonek G.J., Berns M.W., Chapman C.F., Tromberg B.J. Evidence for localized cell heating induced by infrared optical tweezers. Biophys. J. 1995;68:2137–2144. doi: 10.1016/S0006-3495(95)80396-6. PubMed DOI PMC
Peterman E.J.G., Gittes F., Schmidt C.F. Laser-induced heating in optical traps. Biophys. J. 2003;84:1308–1316. doi: 10.1016/S0006-3495(03)74946-7. PubMed DOI PMC
Snook R.D., Harvey T.J., Faria E.C., Gardner P. Raman tweezers and their application to the study of singly trapped eukaryotic cells. Integr. Biol. 2009;1:43–52. doi: 10.1039/B815253E. PubMed DOI
Feder M.E., Hofmann G.E. Heat-Shock Proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Ann. Rev. Physiol. 1999;61:243–282. doi: 10.1146/annurev.physiol.61.1.243. PubMed DOI
Singh G.P., Volpe G., Creely C.M., Grotsch H., Geli I.M., Petrov D. The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy. J. Raman Spectrosc. 2006;37:858–864. doi: 10.1002/jrs.1520. DOI
Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress