Observation of dielectric universalities in albumin, cytochrome C and Shewanella oneidensis MR-1 extracellular matrix

. 2017 Nov 16 ; 7 (1) : 15731. [epub] 20171116

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29147016
Odkazy

PubMed 29147016
PubMed Central PMC5691187
DOI 10.1038/s41598-017-15693-y
PII: 10.1038/s41598-017-15693-y
Knihovny.cz E-zdroje

The electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ 1(ν) whose magnitude exponentially decreases while cooling. With increasing frequency, dispersionless conductivity starts to reveal a power-law dependence σ 1(ν)∝ν s with s < 1 caused by hopping charge carriers. At low temperatures, such Universal Dielectric Response can cross over to another universal regime with nearly constant loss ε″∝σ1/ν = const. The powerful research potential based on such universalities is widely used in condensed matter physics. Here we study the broad-band (1-1012 Hz) dielectric response of Shewanella oneidensis MR-1 extracellular matrix, cytochrome C and serum albumin. Applying concepts of condensed matter physics, we identify transport mechanisms and a number of energy, time, frequency, spatial and temperature scales in these biological objects, which can provide us with deeper insight into the protein dynamics.

Zobrazit více v PubMed

Sokolov, A. V. Optical Properties of Metals. (American Elsevier, 1967).

Dressel, M. & Gruner, G. Electrodynamics of Solids. (Cambridge University Press, 2002).

Mott, N. F. & Davis, E. A. Electronic Processes in Noncrystalline Solids. (Oxford University Press, 1971).

Jonscher, A. K. Universal relaxation law. (Chelsea Dielectrics Press Ltd, 1995).

Jonscher AK. The ‘universal’ dielectric response. Nature. 1977;267:673–679. doi: 10.1038/267673a0. DOI

Dyre JC. The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 1988;64:2456. doi: 10.1063/1.341681. DOI

Lunkenheimer P, Loidl A. Response of disordered matter to electromagnetic fields. Phys. Rev. Lett. 2003;91:207601. doi: 10.1103/PhysRevLett.91.207601. PubMed DOI

Dyre JC, Schrøder TB. Universality of ac conduction in disordered solids. Rev. Mod. Phys. 2000;72:873–892. doi: 10.1103/RevModPhys.72.873. PubMed DOI

Sidebottom DL. Universal Approach for Scaling the ac Conductivity in Ionic Glasses. Phys. Rev. Lett. 1999;82:3653–3656. doi: 10.1103/PhysRevLett.82.3653. DOI

Murugavel S, Roling B. AC conductivity spectra of alkali tellurite glasses: composition-dependent deviations from the Summerfield scaling. Phys. Rev. Lett. 2002;89:195902. doi: 10.1103/PhysRevLett.89.195902. PubMed DOI

Dyre JC, Maass P, Roling B, Sidebottom DL. Fundamental questions relating to ion conduction in disordered solids. Reports Prog. Phys. 2009;72:46501. doi: 10.1088/0034-4885/72/4/046501. DOI

Williams, R. J. P. In Electron Transfer in Biology and the Solid State 3–23 (American Chemical Society, 1989).

Quinlan GJ, Martin GS, Evans TW. Albumin: Biochemical properties and therapeutic potential. Hepatology. 2005;41:1211–1219. doi: 10.1002/hep.20720. PubMed DOI

Hatefi Y, Hanstein WG, Davis KA, You KS. Structure of the mitochondrial electron transport system. Ann. N. Y. Acad. Sci. 1974;227:504–20. doi: 10.1111/j.1749-6632.1974.tb14413.x. PubMed DOI

Liu J, et al. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem. Rev. 2014;114:4366–469. doi: 10.1021/cr400479b. PubMed DOI PMC

Hayashi T, Stuchebrukhov AA. Electron tunneling in respiratory complex I. Proc. Natl. Acad. Sci. USA. 2010;107:19157–62. doi: 10.1073/pnas.1009181107. PubMed DOI PMC

Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources. 2017;356:225–244. doi: 10.1016/j.jpowsour.2017.03.109. PubMed DOI PMC

White, G. F. et al. In Advances in microbial physiology68, 87–138 (2016). PubMed

El-Naggar MY, Gorby Ya, Xia W, Nealson KH. The molecular density of states in bacterial nanowires. Biophys. J. 2008;95:L10–L12. doi: 10.1529/biophysj.108.134411. PubMed DOI PMC

El-Naggar MY, et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA. 2010;107:18127–31. doi: 10.1073/pnas.1004880107. PubMed DOI PMC

Gorby YA, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA. 2006;103:11358–63. doi: 10.1073/pnas.0604517103. PubMed DOI PMC

Leung KM, et al. Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior. Nano Lett. 2013;13:2407–2411. doi: 10.1021/nl400237p. PubMed DOI

Subramanian, P., Pirbadian, S., El-Naggar, M. Y. & Jensen, G. J. The ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryo-tomography. bioRxiv (2017). PubMed PMC

Pirbadian S, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. 2014;111:12883–12888. doi: 10.1073/pnas.1410551111. PubMed DOI PMC

Bodemer GJ, Antholine WA, Basova LV, Saffarini D, Pacheco AA. The effect of detergents and lipids on the properties of the outer-membrane protein OmcA from Shewanella oneidensis. JBIC J. Biol. Inorg. Chem. 2010;15:749–758. doi: 10.1007/s00775-010-0643-0. PubMed DOI

Hartshorne RS, et al. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. JBIC J. Biol. Inorg. Chem. 2007;12:1083–1094. doi: 10.1007/s00775-007-0278-y. PubMed DOI

Pitts KE, et al. Characterization of the Shewanella oneidensis MR-1 Decaheme Cytochrome MtrA. J. Biol. Chem. 2003;278:27758–27765. doi: 10.1074/jbc.M302582200. PubMed DOI

Dyre JC, et al. Fundamental questions relating to ion conduction in disordered solids. Reports Prog. Phys. 2009;72:46501. doi: 10.1088/0034-4885/72/4/046501. DOI

Roling B, Martiny C, Murugavel S. Ionic conduction in glass: new information on the interrelation between the ‘Jonscher behavior’ and the ‘nearly constant-loss behavior’ from broadband conductivity spectra. Phys. Rev. Lett. 2001;87:85901. doi: 10.1103/PhysRevLett.87.085901. PubMed DOI

Sidebottom DL, Murray-Krezan CM. Distinguishing two contributions to the nearly constant loss in ion-conducting glasses. Phys. Rev. Lett. 2002;89:195901. doi: 10.1103/PhysRevLett.89.195901. PubMed DOI

Khodadadi S, Sokolov AP. Protein dynamics: from rattling in a cage to structural relaxation. Soft Matter. 2015;11:4984–98. doi: 10.1039/C5SM00636H. PubMed DOI

Capaccioli S, Thayyil MS, Ngai KL. Critical issues of current research on the dynamics leading to glass transition. J. Phys. Chem. B. 2008;112:16035–49. doi: 10.1021/jp8057433. PubMed DOI

Capaccioli S, Ngai KL, Shinyashiki N. The Johari−Goldstein β-Relaxation of Water. J. Phys. Chem. B. 2007;111:8197–8209. doi: 10.1021/jp071857m. PubMed DOI

Ngai KL, Capaccioli S, Paciaroni A. Dynamics of hydrated proteins and bio-protectants: Caged dynamics, β-relaxation, and α-relaxation. Biochim. Biophys. Acta. 2016;1861:3553–3563. doi: 10.1016/j.bbagen.2016.04.027. PubMed DOI

von Hippel AR. The dielectric relaxation spectra of water, ice, and aqueous solutions, and their interpretation. I. Critical survey of the status-quo for water. IEEE Trans. Electr. Insul. 1988;23:801–816. doi: 10.1109/14.8745. DOI

Green JL, Fan J, Angell CA. The protein-glass analogy: New insight from homopeptide comparisons. J. Phys. Chem. 1994;98:13780–13790. doi: 10.1021/j100102a052. DOI

Iben I, et al. Glassy behavior of a protein. Phys. Rev. Lett. 1989;62:1916–1919. doi: 10.1103/PhysRevLett.62.1916. PubMed DOI

Piazza F, De Los Rios P, Sanejouand Y-H. Slow energy relaxation of macromolecules and nanoclusters in solution. Phys. Rev. Lett. 2005;94:145502. doi: 10.1103/PhysRevLett.94.145502. PubMed DOI

Xie A, van der Meer AFG, Austin RH. Excited-state lifetimes of far-infrared collective modes in proteins. Phys. Rev. Lett. 2002;88:18102. doi: 10.1103/PhysRevLett.88.018102. PubMed DOI

Shintani H, Tanaka H. Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 2008;7:870–7. doi: 10.1038/nmat2293. PubMed DOI

Khodadadi S, Malkovskiy A, Kisliuk A, Sokolov AP. A broad glass transition in hydrated proteins. Biochim. Biophys. Acta. 2010;1804:15–9. doi: 10.1016/j.bbapap.2009.05.006. PubMed DOI

Surovtsev NV. Evaluation of terahertz density of vibrational states from specific-heat data: Application to silica glass. Phys. Rev. E. 2001;64:61102. doi: 10.1103/PhysRevE.64.061102. PubMed DOI

Acbas G, Niessen Ka, Snell EH. & Markelz, a G. Optical measurements of long-range protein vibrations. Nat. Commun. 2014;5:3076. doi: 10.1038/ncomms4076. PubMed DOI

Perticaroli S, Nickels JD, Ehlers G, Sokolov AP. Rigidity, secondary structure, and the universality of the boson peak in proteins. Biophys. J. 2014;106:2667–74. doi: 10.1016/j.bpj.2014.05.009. PubMed DOI PMC

Richardson DJ, et al. The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol. Microbiol. 2012;85:201–212. doi: 10.1111/j.1365-2958.2012.08088.x. PubMed DOI

Paciaroni A, et al. Fingerprints of Amorphous Icelike Behavior in the Vibrational Density of States of Protein Hydration Water. Phys. Rev. Lett. 2008;101:148104. doi: 10.1103/PhysRevLett.101.148104. PubMed DOI

Liu J, Konermann L. Irreversible thermal denaturation of cytochrome C studied by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2009;20:819–28. doi: 10.1016/j.jasms.2008.12.016. PubMed DOI

El Kadi N, et al. Unfolding and refolding of bovine serum albumin at acid pH: ultrasound and structural studies. Biophys. J. 2006;91:3397–404. doi: 10.1529/biophysj.106.088963. PubMed DOI PMC

Brahms S, Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J. Mol. Biol. 1980;138:149–78. doi: 10.1016/0022-2836(80)90282-X. PubMed DOI

Meredith, P., Tandy, K. & Mostert, A. B. In Organic Electronics 91–111 (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).

Mostert AB, et al. Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc. Natl. Acad. Sci. 2012;109:8943–8947. doi: 10.1073/pnas.1119948109. PubMed DOI PMC

Edwards, P. P., Gray, H. B., Lodge, M. T. J. & Williams, R. J. P. Electron Transfer and Electronic Conduction through an Intervening Medium. Angew. Chemie Int. Ed. 47, 6758–6765 (2008). PubMed

Waleed Shinwari M, Jamal Deen M, Starikov EB, Cuniberti G. Electrical Conductance in Biological Molecules. Adv. Funct. Mater. 2010;20:1865–1883. doi: 10.1002/adfm.200902066. DOI

Amit M, et al. Hybrid Proton and Electron Transport in Peptide Fibrils. Adv. Funct. Mater. 2014;24:5873–5880. doi: 10.1002/adfm.201401111. DOI

Shah A, et al. Electron transfer in peptides. Chem. Soc. Rev. 2015;44:1015–27. doi: 10.1039/C4CS00297K. PubMed DOI

Ron I, Pecht I, Sheves M, Cahen D. Proteins as Solid-State Electronic Conductors. Acc. Chem. Res. 2010;43:945–953. doi: 10.1021/ar900161u. PubMed DOI

Logan BE, et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 2006;40:5181–92. doi: 10.1021/es0605016. PubMed DOI

Logan BE, et al. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006;40:5181–5192. doi: 10.1021/es0605016. PubMed DOI

Richardson DJ, et al. The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol. Microbiol. 2012;85:201–212. doi: 10.1111/j.1365-2958.2012.08088.x. PubMed DOI

Kittel, C. Introduction to Solid State Physics, Sixth Edition. (John Wiley, 1986).

Malinovsky VK, Novikov VN, Sokolov AP, Bagryansky VA. Light scattering by fractons in polymers. Chem. Phys. Lett. 1988;143:111–114. doi: 10.1016/0009-2614(88)87021-0. DOI

Speziale S, et al. Sound Velocity and Elasticity of Tetragonal Lysozyme Crystals by Brillouin Spectroscopy. Biophys. J. 2003;85:3202–3213. doi: 10.1016/S0006-3495(03)74738-9. PubMed DOI PMC

Griesbauer J, Wixforth A, Schneider MF. Wave Propagation in Lipid Monolayers. Biophys. J. 2009;97:2710–2716. doi: 10.1016/j.bpj.2009.07.049. PubMed DOI PMC

Yoshida K, Baron AQR, Uchiyama H, Tsutsui S, Yamaguchi T. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diff. J. Chem. Phys. 2016;144:134505. doi: 10.1063/1.4944987. PubMed DOI

Kurzweil-Segev Y, et al. The role of the confined water in the dynamic crossover of hydrated lysozyme powders. Phys. Chem. Chem. Phys. 2016;18:10992–10999. doi: 10.1039/C6CP01084A. PubMed DOI

Lora Huang L-C, Huan-Cheng H-C. Adsorption and Immobilization of Cytochrome c on Nanodiamonds. Langmuir. 2004;20:5879–5884. doi: 10.1021/la0495736. PubMed DOI

Wright AK, Thompson MR. Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. Biophys. J. 1975;15:137–41. doi: 10.1016/S0006-3495(75)85797-3. PubMed DOI PMC

Koppenol WH, Rush JD, Mills JD, Margoliash E. The dipole moment of cytochrome c. Mol. Biol. Evol. 1991;8:545–58. PubMed

Masuelli MA, Masuelli MA. Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements. Adv. Phys. Chem. 2013;2013:1–8. doi: 10.1155/2013/360239. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Redox chemistry in the pigment eumelanin as a function of temperature using broadband dielectric spectroscopy

. 2019 Jan 25 ; 9 (7) : 3857-3867. [epub] 20190129

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...