Observation of dielectric universalities in albumin, cytochrome C and Shewanella oneidensis MR-1 extracellular matrix
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
29147016
PubMed Central
PMC5691187
DOI
10.1038/s41598-017-15693-y
PII: 10.1038/s41598-017-15693-y
Knihovny.cz E-zdroje
- MeSH
- albuminy metabolismus MeSH
- cytochromy c metabolismus MeSH
- elektrická vodivost MeSH
- elektřina * MeSH
- extracelulární matrix metabolismus MeSH
- Shewanella metabolismus MeSH
- skot MeSH
- spektrální analýza MeSH
- teplota MeSH
- voda chemie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- albuminy MeSH
- cytochromy c MeSH
- voda MeSH
The electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ 1(ν) whose magnitude exponentially decreases while cooling. With increasing frequency, dispersionless conductivity starts to reveal a power-law dependence σ 1(ν)∝ν s with s < 1 caused by hopping charge carriers. At low temperatures, such Universal Dielectric Response can cross over to another universal regime with nearly constant loss ε″∝σ1/ν = const. The powerful research potential based on such universalities is widely used in condensed matter physics. Here we study the broad-band (1-1012 Hz) dielectric response of Shewanella oneidensis MR-1 extracellular matrix, cytochrome C and serum albumin. Applying concepts of condensed matter physics, we identify transport mechanisms and a number of energy, time, frequency, spatial and temperature scales in these biological objects, which can provide us with deeper insight into the protein dynamics.
1 Physikalisches Institut Universität Stuttgart Stuttgart Germany
A M Prokhorov General Physics Institute RAS Moscow Russia
Institute for Metallic Materials IFW Dresden Dresden Germany
Institute of Physics AS CR Praha 8 Czech Republic
Moscow Institute of Physics and Technology Dolgoprudny Moscow Region Russia
Moscow Institute of Physics and Technology Institutsky lane 9 Dolgoprudny Moscow 141701 Russia
Zobrazit více v PubMed
Sokolov, A. V. Optical Properties of Metals. (American Elsevier, 1967).
Dressel, M. & Gruner, G. Electrodynamics of Solids. (Cambridge University Press, 2002).
Mott, N. F. & Davis, E. A. Electronic Processes in Noncrystalline Solids. (Oxford University Press, 1971).
Jonscher, A. K. Universal relaxation law. (Chelsea Dielectrics Press Ltd, 1995).
Jonscher AK. The ‘universal’ dielectric response. Nature. 1977;267:673–679. doi: 10.1038/267673a0. DOI
Dyre JC. The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 1988;64:2456. doi: 10.1063/1.341681. DOI
Lunkenheimer P, Loidl A. Response of disordered matter to electromagnetic fields. Phys. Rev. Lett. 2003;91:207601. doi: 10.1103/PhysRevLett.91.207601. PubMed DOI
Dyre JC, Schrøder TB. Universality of ac conduction in disordered solids. Rev. Mod. Phys. 2000;72:873–892. doi: 10.1103/RevModPhys.72.873. PubMed DOI
Sidebottom DL. Universal Approach for Scaling the ac Conductivity in Ionic Glasses. Phys. Rev. Lett. 1999;82:3653–3656. doi: 10.1103/PhysRevLett.82.3653. DOI
Murugavel S, Roling B. AC conductivity spectra of alkali tellurite glasses: composition-dependent deviations from the Summerfield scaling. Phys. Rev. Lett. 2002;89:195902. doi: 10.1103/PhysRevLett.89.195902. PubMed DOI
Dyre JC, Maass P, Roling B, Sidebottom DL. Fundamental questions relating to ion conduction in disordered solids. Reports Prog. Phys. 2009;72:46501. doi: 10.1088/0034-4885/72/4/046501. DOI
Williams, R. J. P. In Electron Transfer in Biology and the Solid State 3–23 (American Chemical Society, 1989).
Quinlan GJ, Martin GS, Evans TW. Albumin: Biochemical properties and therapeutic potential. Hepatology. 2005;41:1211–1219. doi: 10.1002/hep.20720. PubMed DOI
Hatefi Y, Hanstein WG, Davis KA, You KS. Structure of the mitochondrial electron transport system. Ann. N. Y. Acad. Sci. 1974;227:504–20. doi: 10.1111/j.1749-6632.1974.tb14413.x. PubMed DOI
Liu J, et al. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem. Rev. 2014;114:4366–469. doi: 10.1021/cr400479b. PubMed DOI PMC
Hayashi T, Stuchebrukhov AA. Electron tunneling in respiratory complex I. Proc. Natl. Acad. Sci. USA. 2010;107:19157–62. doi: 10.1073/pnas.1009181107. PubMed DOI PMC
Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources. 2017;356:225–244. doi: 10.1016/j.jpowsour.2017.03.109. PubMed DOI PMC
White, G. F. et al. In Advances in microbial physiology68, 87–138 (2016). PubMed
El-Naggar MY, Gorby Ya, Xia W, Nealson KH. The molecular density of states in bacterial nanowires. Biophys. J. 2008;95:L10–L12. doi: 10.1529/biophysj.108.134411. PubMed DOI PMC
El-Naggar MY, et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA. 2010;107:18127–31. doi: 10.1073/pnas.1004880107. PubMed DOI PMC
Gorby YA, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA. 2006;103:11358–63. doi: 10.1073/pnas.0604517103. PubMed DOI PMC
Leung KM, et al. Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior. Nano Lett. 2013;13:2407–2411. doi: 10.1021/nl400237p. PubMed DOI
Subramanian, P., Pirbadian, S., El-Naggar, M. Y. & Jensen, G. J. The ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryo-tomography. bioRxiv (2017). PubMed PMC
Pirbadian S, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. 2014;111:12883–12888. doi: 10.1073/pnas.1410551111. PubMed DOI PMC
Bodemer GJ, Antholine WA, Basova LV, Saffarini D, Pacheco AA. The effect of detergents and lipids on the properties of the outer-membrane protein OmcA from Shewanella oneidensis. JBIC J. Biol. Inorg. Chem. 2010;15:749–758. doi: 10.1007/s00775-010-0643-0. PubMed DOI
Hartshorne RS, et al. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. JBIC J. Biol. Inorg. Chem. 2007;12:1083–1094. doi: 10.1007/s00775-007-0278-y. PubMed DOI
Pitts KE, et al. Characterization of the Shewanella oneidensis MR-1 Decaheme Cytochrome MtrA. J. Biol. Chem. 2003;278:27758–27765. doi: 10.1074/jbc.M302582200. PubMed DOI
Dyre JC, et al. Fundamental questions relating to ion conduction in disordered solids. Reports Prog. Phys. 2009;72:46501. doi: 10.1088/0034-4885/72/4/046501. DOI
Roling B, Martiny C, Murugavel S. Ionic conduction in glass: new information on the interrelation between the ‘Jonscher behavior’ and the ‘nearly constant-loss behavior’ from broadband conductivity spectra. Phys. Rev. Lett. 2001;87:85901. doi: 10.1103/PhysRevLett.87.085901. PubMed DOI
Sidebottom DL, Murray-Krezan CM. Distinguishing two contributions to the nearly constant loss in ion-conducting glasses. Phys. Rev. Lett. 2002;89:195901. doi: 10.1103/PhysRevLett.89.195901. PubMed DOI
Khodadadi S, Sokolov AP. Protein dynamics: from rattling in a cage to structural relaxation. Soft Matter. 2015;11:4984–98. doi: 10.1039/C5SM00636H. PubMed DOI
Capaccioli S, Thayyil MS, Ngai KL. Critical issues of current research on the dynamics leading to glass transition. J. Phys. Chem. B. 2008;112:16035–49. doi: 10.1021/jp8057433. PubMed DOI
Capaccioli S, Ngai KL, Shinyashiki N. The Johari−Goldstein β-Relaxation of Water. J. Phys. Chem. B. 2007;111:8197–8209. doi: 10.1021/jp071857m. PubMed DOI
Ngai KL, Capaccioli S, Paciaroni A. Dynamics of hydrated proteins and bio-protectants: Caged dynamics, β-relaxation, and α-relaxation. Biochim. Biophys. Acta. 2016;1861:3553–3563. doi: 10.1016/j.bbagen.2016.04.027. PubMed DOI
von Hippel AR. The dielectric relaxation spectra of water, ice, and aqueous solutions, and their interpretation. I. Critical survey of the status-quo for water. IEEE Trans. Electr. Insul. 1988;23:801–816. doi: 10.1109/14.8745. DOI
Green JL, Fan J, Angell CA. The protein-glass analogy: New insight from homopeptide comparisons. J. Phys. Chem. 1994;98:13780–13790. doi: 10.1021/j100102a052. DOI
Iben I, et al. Glassy behavior of a protein. Phys. Rev. Lett. 1989;62:1916–1919. doi: 10.1103/PhysRevLett.62.1916. PubMed DOI
Piazza F, De Los Rios P, Sanejouand Y-H. Slow energy relaxation of macromolecules and nanoclusters in solution. Phys. Rev. Lett. 2005;94:145502. doi: 10.1103/PhysRevLett.94.145502. PubMed DOI
Xie A, van der Meer AFG, Austin RH. Excited-state lifetimes of far-infrared collective modes in proteins. Phys. Rev. Lett. 2002;88:18102. doi: 10.1103/PhysRevLett.88.018102. PubMed DOI
Shintani H, Tanaka H. Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 2008;7:870–7. doi: 10.1038/nmat2293. PubMed DOI
Khodadadi S, Malkovskiy A, Kisliuk A, Sokolov AP. A broad glass transition in hydrated proteins. Biochim. Biophys. Acta. 2010;1804:15–9. doi: 10.1016/j.bbapap.2009.05.006. PubMed DOI
Surovtsev NV. Evaluation of terahertz density of vibrational states from specific-heat data: Application to silica glass. Phys. Rev. E. 2001;64:61102. doi: 10.1103/PhysRevE.64.061102. PubMed DOI
Acbas G, Niessen Ka, Snell EH. & Markelz, a G. Optical measurements of long-range protein vibrations. Nat. Commun. 2014;5:3076. doi: 10.1038/ncomms4076. PubMed DOI
Perticaroli S, Nickels JD, Ehlers G, Sokolov AP. Rigidity, secondary structure, and the universality of the boson peak in proteins. Biophys. J. 2014;106:2667–74. doi: 10.1016/j.bpj.2014.05.009. PubMed DOI PMC
Richardson DJ, et al. The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol. Microbiol. 2012;85:201–212. doi: 10.1111/j.1365-2958.2012.08088.x. PubMed DOI
Paciaroni A, et al. Fingerprints of Amorphous Icelike Behavior in the Vibrational Density of States of Protein Hydration Water. Phys. Rev. Lett. 2008;101:148104. doi: 10.1103/PhysRevLett.101.148104. PubMed DOI
Liu J, Konermann L. Irreversible thermal denaturation of cytochrome C studied by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2009;20:819–28. doi: 10.1016/j.jasms.2008.12.016. PubMed DOI
El Kadi N, et al. Unfolding and refolding of bovine serum albumin at acid pH: ultrasound and structural studies. Biophys. J. 2006;91:3397–404. doi: 10.1529/biophysj.106.088963. PubMed DOI PMC
Brahms S, Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J. Mol. Biol. 1980;138:149–78. doi: 10.1016/0022-2836(80)90282-X. PubMed DOI
Meredith, P., Tandy, K. & Mostert, A. B. In Organic Electronics 91–111 (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).
Mostert AB, et al. Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc. Natl. Acad. Sci. 2012;109:8943–8947. doi: 10.1073/pnas.1119948109. PubMed DOI PMC
Edwards, P. P., Gray, H. B., Lodge, M. T. J. & Williams, R. J. P. Electron Transfer and Electronic Conduction through an Intervening Medium. Angew. Chemie Int. Ed. 47, 6758–6765 (2008). PubMed
Waleed Shinwari M, Jamal Deen M, Starikov EB, Cuniberti G. Electrical Conductance in Biological Molecules. Adv. Funct. Mater. 2010;20:1865–1883. doi: 10.1002/adfm.200902066. DOI
Amit M, et al. Hybrid Proton and Electron Transport in Peptide Fibrils. Adv. Funct. Mater. 2014;24:5873–5880. doi: 10.1002/adfm.201401111. DOI
Shah A, et al. Electron transfer in peptides. Chem. Soc. Rev. 2015;44:1015–27. doi: 10.1039/C4CS00297K. PubMed DOI
Ron I, Pecht I, Sheves M, Cahen D. Proteins as Solid-State Electronic Conductors. Acc. Chem. Res. 2010;43:945–953. doi: 10.1021/ar900161u. PubMed DOI
Logan BE, et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 2006;40:5181–92. doi: 10.1021/es0605016. PubMed DOI
Logan BE, et al. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006;40:5181–5192. doi: 10.1021/es0605016. PubMed DOI
Richardson DJ, et al. The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol. Microbiol. 2012;85:201–212. doi: 10.1111/j.1365-2958.2012.08088.x. PubMed DOI
Kittel, C. Introduction to Solid State Physics, Sixth Edition. (John Wiley, 1986).
Malinovsky VK, Novikov VN, Sokolov AP, Bagryansky VA. Light scattering by fractons in polymers. Chem. Phys. Lett. 1988;143:111–114. doi: 10.1016/0009-2614(88)87021-0. DOI
Speziale S, et al. Sound Velocity and Elasticity of Tetragonal Lysozyme Crystals by Brillouin Spectroscopy. Biophys. J. 2003;85:3202–3213. doi: 10.1016/S0006-3495(03)74738-9. PubMed DOI PMC
Griesbauer J, Wixforth A, Schneider MF. Wave Propagation in Lipid Monolayers. Biophys. J. 2009;97:2710–2716. doi: 10.1016/j.bpj.2009.07.049. PubMed DOI PMC
Yoshida K, Baron AQR, Uchiyama H, Tsutsui S, Yamaguchi T. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diff. J. Chem. Phys. 2016;144:134505. doi: 10.1063/1.4944987. PubMed DOI
Kurzweil-Segev Y, et al. The role of the confined water in the dynamic crossover of hydrated lysozyme powders. Phys. Chem. Chem. Phys. 2016;18:10992–10999. doi: 10.1039/C6CP01084A. PubMed DOI
Lora Huang L-C, Huan-Cheng H-C. Adsorption and Immobilization of Cytochrome c on Nanodiamonds. Langmuir. 2004;20:5879–5884. doi: 10.1021/la0495736. PubMed DOI
Wright AK, Thompson MR. Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. Biophys. J. 1975;15:137–41. doi: 10.1016/S0006-3495(75)85797-3. PubMed DOI PMC
Koppenol WH, Rush JD, Mills JD, Margoliash E. The dipole moment of cytochrome c. Mol. Biol. Evol. 1991;8:545–58. PubMed
Masuelli MA, Masuelli MA. Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements. Adv. Phys. Chem. 2013;2013:1–8. doi: 10.1155/2013/360239. DOI