Fast and Reliable Differentiation of Eight Trichinella Species Using a High Resolution Melting Assay
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29176674
PubMed Central
PMC5701189
DOI
10.1038/s41598-017-16329-x
PII: 10.1038/s41598-017-16329-x
Knihovny.cz E-resources
- MeSH
- Nucleic Acid Denaturation MeSH
- Genotyping Techniques methods standards MeSH
- Polymorphism, Genetic MeSH
- Electron Transport Complex IV genetics MeSH
- DNA Barcoding, Taxonomic methods standards MeSH
- Trichinella classification genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Electron Transport Complex IV MeSH
High resolution melting analysis (HRMA) is a single-tube method, which can be carried out rapidly as an additional step following real-time quantitative PCR (qPCR). The method enables the differentiation of genetic variation (down to single nucleotide polymorphisms) in amplified DNA fragments without sequencing. HRMA has previously been adopted to determine variability in the amplified genes of a number of organisms. However, only one work to date has focused on pathogenic parasites-nematodes from the genus Trichinella. In this study, we employed a qPCR-HRMA assay specifically targeting two sequential gene fragments-cytochrome c oxidase subunit I (COI) and expansion segment V (ESV), in order to differentiate 37 single L1 muscle larvae samples of eight Trichinella species. We show that qPCR-HRMA based on the mitochondrial COI gene allows differentiation between the sequences of PCR products of the same length. This simple, rapid and reliable method can be used to identify at the species level single larvae of eight Trichinella taxa.
See more in PubMed
Gottstein B, Pozio E, Nockler K. Epidemiology, Diagnosis, Treatment, and Control of Trichinellosis. Clinical Microbiology Reviews. 2009;22:127–+. doi: 10.1128/CMR.00026-08. PubMed DOI PMC
Murrell KD, Pozio E. Worldwide Occurrence and Impact of Human Trichinellosis 1986-2009. Emerging Infectious Diseases. 2011;17:2194–2202. doi: 10.3201/eid1712.110896. PubMed DOI PMC
Dupouy-Camet, J. & Bruschi, F. Management and diagnosis of hu-man trichinellosis in FAO/WHO/OIE guidelines for the surveillance, management, prevention and control of trichinellosis (eds J. Dupouy-Camet & K.D. Murrell) Ch. 2, 49–80 (World Organisation for Animal Health, 2007).
OIE. Infection with Trichinella spp. in Terrestrial Animal Health Code. Ch. 8.17. http://www.oie.int/international-standard-setting/terrestrial-code/access-online/ (2017).
Pozio E, Zarlenga DS. New pieces of the Trichinella puzzle. International Journal for Parasitology. 2013;43:983–997. doi: 10.1016/j.ijpara.2013.05.010. PubMed DOI
Korhonen, P. K. et al. Phylogenomic and biogeographic reconstruction of the Trichinella complex. NatureCommunications7, 10.1038/ncomms10513 (2016). PubMed PMC
Wu Z, et al. Genetic relationships among Trichinella pseudospiralis isolates from Australian, Nearctic, and Palearctic regions. Parasitology Research. 2007;101:1567–1573. doi: 10.1007/s00436-007-0677-6. PubMed DOI
Pozio E, Hoberg E, La Rosa G, Zarlenga DS. Molecular taxonomy, phylogeny and biogeography of nematodes belonging to the Trichinella genus. Infection Genetics and Evolution. 2009;9:606–616. doi: 10.1016/j.meegid.2009.03.003. PubMed DOI
Zarlenga DS, Chute MB, Martin A, Kapel CMO. A multiplex PCR for unequivocal differentiation of all encapsulated and non-encapsulated genotypes of Trichinella. International Journal for Parasitology. 1999;29:1859–1867. doi: 10.1016/S0020-7519(99)00107-1. PubMed DOI
Pozio E, et al. Trichinella papuae n.sp (Nematoda), a new non-encapsulated species from domestic and sylvatic swine of Papua New Guinea. International Journal for Parasitology. 1999;29:1825–1839. doi: 10.1016/S0020-7519(99)00135-6. PubMed DOI
Pozio, E. & La Rosa, G. In PCR Detection of Microbial Pathogens Vol. 216 (ed K.Frey Sachse, J.) Ch. 21, 299–309 (Humana Press Inc., 2003).
Zarlenga DS, Chute MB, Martin A, Kapel CMO. A single, multiplex PCR for differentiating all species of Trichinella. Parasite-Journal De La Societe Francaise De Parasitologie. 2001;8:S24–S26. PubMed
Pozio, E. & La Rosa, G. In Molecular detection of foodborne pathogens Ch. 63, 851–863 (CRC Press, Taylor & Francis Group, 2010).
Wu Z, Nagano I, Pozio E, Takahashi Y. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) for the identification of Trichinella isolates. Parasitology. 1999;118:211–218. doi: 10.1017/S0031182098003679. PubMed DOI
Nagano I, Wu Z, Matsuo A, Pozio E, Takahashi Y. Identification of Trichinella isolates by polymerase chain reaction-restriction fragment length polymorphism of the mitochondrial cytochrome c-oxidase subunit I gene. International Journal for Parasitology. 1999;29:1113–1120. doi: 10.1016/S0020-7519(99)00060-0. PubMed DOI
Reed GH, Kent JO, Wittwer CT. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics. 2007;8:597–608. doi: 10.2217/14622416.8.6.597. PubMed DOI
Radvansky J, Bazsalovicsova E, Kralova-Hromadova I, Minarik G, Kadasi L. Development of high-resolution melting (HRM) analysis for population studies of Fascioloides magna (Trematoda: Fasciolidae), the giant liver fluke of ruminants. Parasitology Research. 2011;108:201–209. doi: 10.1007/s00436-010-2057-x. PubMed DOI
Nemcova, E. et al. Rapid Identification of Medically Important Candida Isolates Using High Resolution Melting Analysis. Plos One10, 10.1371/journal.pone.0116940 (2015). PubMed PMC
Fraley, S. I. et al. Nested Machine Learning Facilitates Increased Sequence Content for Large-Scale Automated High Resolution Melt Genotyping. Scientific Reports6, 10.1038/srep19218 (2016). PubMed PMC
Masny A, Jagiello A, Plucienniczak G, Golab E. Ribo HRM - Detection of inter- and intra-species polymorphisms within ribosomal DNA by high resolution melting analysis supported by application of artificial allelic standards. Journal of Microbiological Methods. 2012;90:336–341. doi: 10.1016/j.mimet.2012.06.012. PubMed DOI
Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B-Biological Sciences. 2003;270:S96–S99. doi: 10.1098/rsbl.2003.0025. PubMed DOI PMC
Mohandas N, et al. Mitochondrial genomes of Trichinella species and genotypes - a basis for diagnosis, and systematic and epidemiological explorations. International Journal for Parasitology. 2014;44:1073–1080. doi: 10.1016/j.ijpara.2014.08.010. PubMed DOI
Zavodna M, Sandland GJ, Minchella DJ. Effects of intermediate host genetic background on parasite transmission dynamics: A case study using Schistosoma mansoni. Experimental Parasitology. 2008;120:57–61. doi: 10.1016/j.exppara.2008.04.021. PubMed DOI PMC
La Rosa G, Marucci G, Zarlenga DS, Pozio E. Trichinella pseudospiralis populations of the Palearctic region and their relationship with populations of the Nearctic and Australian regions. International Journal for Parasitology. 2001;31:297–305. doi: 10.1016/S0020-7519(01)00110-2. PubMed DOI
Zarlenga DS, Aschenbrenner RA, Lichtenfels JR. Variations in microsatellite sequences provide evidence for population differences and multiple ribosomal gene repeats within Trichinella pseudospiralis. Journal of Parasitology. 1996;82:534–538. doi: 10.2307/3283777. PubMed DOI
Murrell, K. D. & Bruschi, F. In Progress in Clinical Parasitology Vol. 4 (ed Tsieh Sun) Ch. 5, 117–150 (CRC Press, Inc., 1994). PubMed
Franssen F, et al. Genetic evidence of interspecies introgression of mitochondrial genomes between Trichinella spiralis and Trichinella britovi under natural conditions. Infection Genetics and Evolution. 2015;36:323–332. doi: 10.1016/j.meegid.2015.10.005. PubMed DOI