Designing flexible 2D transition metal carbides with strain-controllable lithium storage

. 2017 Dec 26 ; 114 (52) : E11082-E11091. [epub] 20171211

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29229853

Efficient flexible energy storage systems have received tremendous attention due to their enormous potential applications in self-powering portable electronic devices, including roll-up displays, electronic paper, and "smart" garments outfitted with piezoelectric patches to harvest energy from body movement. Unfortunately, the further development of these technologies faces great challenges due to a lack of ideal electrode materials with the right electrochemical behavior and mechanical properties. MXenes, which exhibit outstanding mechanical properties, hydrophilic surfaces, and high conductivities, have been identified as promising electrode material candidates. In this work, taking 2D transition metal carbides (TMCs) as representatives, we systematically explored several influencing factors, including transition metal species, layer thickness, functional group, and strain on their mechanical properties (e.g., stiffness, flexibility, and strength) and their electrochemical properties (e.g., ionic mobility, equilibrium voltage, and theoretical capacity). Considering potential charge-transfer polarization, we employed a charged electrode model to simulate ionic mobility and found that ionic mobility has a unique dependence on the surface atomic configuration influenced by bond length, valence electron number, functional groups, and strain. Under multiaxial loadings, electrical conductivity, high ionic mobility, low equilibrium voltage with good stability, excellent flexibility, and high theoretical capacity indicate that the bare 2D TMCs have potential to be ideal flexible anode materials, whereas the surface functionalization degrades the transport mobility and increases the equilibrium voltage due to bonding between the nonmetals and Li. These results provide valuable insights for experimental explorations of flexible anode candidates based on 2D TMCs.

Zobrazit více v PubMed

Miller JR. Applied physics. Valuing reversible energy storage. Science. 2012;335:1312–1313. PubMed

Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652–657. PubMed

Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: A battery of choices. Science. 2011;334:928–935. PubMed

El-Kady MF, Strong V, Dubin S, Kaner RB. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science. 2012;335:1326–1330. PubMed

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294–303. PubMed

Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2011;11:19–29. PubMed

Dahn JR, Zheng T, Liu Y, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science. 1995;270:590–593.

Reddy MV, et al. α-Fe2O3 nanoflakes as an anode material for li-ion batteries. Adv Funct Mater. 2007;17:2792–2799.

Chan CK, Zhang XF, Cui Y. High capacity Li ion battery anodes using ge nanowires. Nano Lett. 2008;8:307–309. PubMed

Chan CK, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008;3:31–35. PubMed

Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science. 1997;276:1395–1397.

Reddy MV, Subba Rao GV, Chowdari BVR. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev. 2013;113:5364–5457. PubMed

Kaskhedikar NA, Maier J. Lithium storage in carbon nanostructures. Adv Mater. 2009;21:2664–2680. PubMed

Stankovich S, et al. Graphene-based composite materials. Nature. 2006;442:282–286. PubMed

Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3:101–105. PubMed

Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516:78–81. PubMed

Mashtalir O, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun. 2013;4:1716. PubMed

Xie Y, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano. 2014;8:9606–9615. PubMed

Eames C, Islam MS. Ion intercalation into two-dimensional transition-metal carbides: Global screening for new high-capacity battery materials. J Am Chem Soc. 2014;136:16270–16276. PubMed

Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc. 2012;134:16909–16916. PubMed

Kurtoglu M, Naguib M, Gogotsi Y, Barsoum MW. First principles study of two-dimensional early transition metal carbides. MRS Commun. 2012;2:133–137.

Borysiuk VN, Mochalin VN, Gogotsi Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Ti(n+1)C(n) (MXenes) Nanotechnology. 2015;26:265705. PubMed

Guo Z, Zhou J, Si C, Sun Z. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys Chem Chem Phys. 2015;17:15348–15354. PubMed

Wang H, et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science. 2016;354:1031–1036. PubMed

Zhao S, Kang W, Xue J. Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Appl Phys Lett. 2014;104:133106.

Gao G, et al. Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale. 2016;8:8986–8994. PubMed

Gan L-Y, Zhao Y-J, Huang D, Schwingenschlögl U. First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y=F and OH) all-2D semiconductor/metal contacts. Phys Rev B. 2013;87:245307.

Luo J, et al. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano. 2016;10:2491–2499. PubMed

Ong SP, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci. 2011;4:3680–3688.

Urban A, Seo D-H, Ceder G. Computational understanding of Li-ion batteries. npj Compu Mater. 2016;2:16002.

Koryta J, Dvorak W, Kavan L. Principles of Electrochemistry. 2nd Ed Wiley; New York: 1987.

Schedin F, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6:652–655. PubMed

Lozovoi AY, Alavi A, Kohanoff J, Lyndenbell RM. Ab initio simulation of charged slabs at constant chemical potential. J Chem Phys. 2001;115:1661–1669.

Schultz PA. Charged local defects in extended systems. Phys Rev Lett. 2000;84:1942–1945. PubMed

Walle CGVD, Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides. J Appl Phys. 2004;95:3851–3879.

Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res. 2011;41:195–227.

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2:16098.

Naguib M, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6:1322–1331. PubMed

Naguib M, et al. Two-dimensional nanocrystals: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4207. PubMed

Ghidiu M, et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene) Chem Commun (Camb) 2014;50:9517–9520. PubMed

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv Mater. 2014;26:992–1005. PubMed

Khazaei M, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater. 2013;23:2185–2192.

Cakr D, Sevik C, Gulseren O, Peeters FM. Mo2C as a high capacity anode material: A first-principles study. J Mater Chem A Mater Energy Sustain. 2016;4:6029–6035.

Yorulmaz U, Özden A, Perkgöz NK, Ay F, Sevik C. Vibrational and mechanical properties of single layer MXene structures: A first-principles investigation. Nanotechnology. 2016;27:335702. PubMed

Hong L, Klie RF, Öğüt S. First-principles study of size- and edge-dependent properties of MXene nanoribbons. Phys Rev B. 2016;93:115412.

Shi C, et al. Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function. Phys Rev Lett. 2014;112:125501. PubMed

Xie Y, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc. 2014;136:6385–6394. PubMed

Si C, Duan W, Liu Z, Liu F. Electronic strengthening of graphene by charge doping. Phys Rev Lett. 2012;109:226802. PubMed

Vineyard GH. Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids. 1957;3:121–127.

Van der Ven A, Thomas JC, Xu Q, Swoboda B, Morgan D. Nondilute diffusion from first principles: Li diffusion in LixTiS2. Phys Rev B. 2008;78:104306.

Halim J, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) Appl Surf Sci. 2016;362:406–417.

Jónsson H, Mills G, Jacobsen KW. Classical and Quantum Dynamics in Condensed Phase Simulations: Proceedings of the International School of Physics. World Scientific; Singapore: 1997. Nudged elastic band method for finding minimum energy paths of transition; pp. 385–404.

Lukatskaya MR, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013;341:1502–1505. PubMed

Tian H, et al. Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Adv Energy Mater. 2017;7:1602528.

Come J, et al. Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes. Adv Energy Mater. 2016;6:1502290.

Ling Z, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA. 2014;111:16676–16681. PubMed PMC

Gogotsi Y, Simon P. Materials science. True performance metrics in electrochemical energy storage. Science. 2011;334:917–918. PubMed

Yang X, Cheng C, Wang Y, Qiu L, Li D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science. 2013;341:534–537. PubMed

Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR. Ab Initio calculation of the lithium-tin voltage profile. Phys Rev B. 1998;58:15583–15588.

Ceder G, Van der Ven A. Phase diagrams of lithium transition metal oxides: Investigations from first principles. Electrochim Acta. 1999;45:131–150.

Van der Ven A, Bhattacharya J, Belak AA. Understanding Li diffusion in Li-intercalation compounds. Acc Chem Res. 2013;46:1216–1225. PubMed

Van der Ven A, Aydinol MK, Ceder G, Kresse G, Hafner J. First-principles investigation of phase stability in LixCoO2. Phys Rev B. 1998;58:2975–2987.

Ashton M, Mathew K, Hennig RG, Sinnott SB. Predicted surface composition and thermodynamic stability of MXenes in solution. J Phys Chem C. 2016;120:3550–3556.

Hope MA, et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys Chem Chem Phys. 2016;18:5099–5102. PubMed

Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B Condens Matter. 1992;45:13244–13249. PubMed

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. PubMed

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter. 1996;54:11169–11186. PubMed

Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter. 1994;50:17953–17979. PubMed

Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901–9904.

Lian P, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta. 2010;55:3909–3914.

Wang Y, et al. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026–1031. PubMed

Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano. 2011;5:9703–9709. PubMed

Wei Q, Peng X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl Phys Lett. 2014;104:372–398.

Li T. Ideal strength and phonon instability in single-layer MoS2. Phys Rev B. 2012;85:235407.

Rydberg H, et al. Van der Waals density functional for layered structures. Phys Rev Lett. 2003;91:126402. PubMed

Zhang RF, et al. Stability and strength of transition-metal tetraborides and triborides. Phys Rev Lett. 2012;108:255502. PubMed

Fu ZH, et al. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys Rev B. 2016;94:104103.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...