Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29263363
PubMed Central
PMC5738342
DOI
10.1038/s41467-017-02373-8
PII: 10.1038/s41467-017-02373-8
Knihovny.cz E-zdroje
- MeSH
- aktiny účinky léků metabolismus MeSH
- buněčná adheze MeSH
- CD antigeny účinky léků metabolismus MeSH
- cévní endotel MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- endoteliální buňky účinky léků metabolismus fyziologie MeSH
- fyziologická neovaskularizace účinky léků fyziologie MeSH
- kadheriny účinky léků metabolismus MeSH
- komplex proteinů 2-3 souvisejících s aktinem metabolismus MeSH
- lehké řetězce myosinu metabolismus MeSH
- lidé MeSH
- mezibuněčné spoje účinky léků metabolismus MeSH
- mikrotubuly účinky léků metabolismus MeSH
- modely kardiovaskulární MeSH
- pohyb buněk účinky léků fyziologie MeSH
- polarita buněk účinky léků fyziologie MeSH
- protein 2 související s aktinem metabolismus MeSH
- protein 3 související s aktinem metabolismus MeSH
- protein Wiskottova-Aldrichova syndromu metabolismus MeSH
- pseudopodia účinky léků metabolismus fyziologie MeSH
- rac proteiny vázající GTP metabolismus MeSH
- receptor 2 pro vaskulární endoteliální růstový faktor metabolismus MeSH
- remodelace cév MeSH
- rodina proteinů Wiskottova-Aldrichova syndromu metabolismus MeSH
- signální transdukce MeSH
- srdeční myosiny metabolismus MeSH
- vaskulární endoteliální růstový faktor A metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ACTR2 protein, human MeSH Prohlížeč
- ACTR3 protein, human MeSH Prohlížeč
- aktiny MeSH
- cadherin 5 MeSH Prohlížeč
- CD antigeny MeSH
- kadheriny MeSH
- KDR protein, human MeSH Prohlížeč
- komplex proteinů 2-3 souvisejících s aktinem MeSH
- lehké řetězce myosinu MeSH
- myosin light chain 2 MeSH Prohlížeč
- protein 2 související s aktinem MeSH
- protein 3 související s aktinem MeSH
- protein Wiskottova-Aldrichova syndromu MeSH
- rac proteiny vázající GTP MeSH
- receptor 2 pro vaskulární endoteliální růstový faktor MeSH
- rodina proteinů Wiskottova-Aldrichova syndromu MeSH
- srdeční myosiny MeSH
- vaskulární endoteliální růstový faktor A MeSH
- VEGFA protein, human MeSH Prohlížeč
- WAS protein, human MeSH Prohlížeč
- WASF1 protein, human MeSH Prohlížeč
VEGFR-2/Notch signalling regulates angiogenesis in part by driving the remodelling of endothelial cell junctions and by inducing cell migration. Here, we show that VEGF-induced polarized cell elongation increases cell perimeter and decreases the relative VE-cadherin concentration at junctions, triggering polarized formation of actin-driven junction-associated intermittent lamellipodia (JAIL) under control of the WASP/WAVE/ARP2/3 complex. JAIL allow formation of new VE-cadherin adhesion sites that are critical for cell migration and monolayer integrity. Whereas at the leading edge of the cell, large JAIL drive cell migration with supportive contraction, lateral junctions show small JAIL that allow relative cell movement. VEGFR-2 activation initiates cell elongation through dephosphorylation of junctional myosin light chain II, which leads to a local loss of tension to induce JAIL-mediated junctional remodelling. These events require both microtubules and polarized Rac activity. Together, we propose a model where polarized JAIL formation drives directed cell migration and junctional remodelling during sprouting angiogenesis.
Department of Cybernetics Czech Technical University 16627 Prague 6 Czech Republic
Institute of Cell Biology Center for Molecular Biology of Inflammation D 48149 Münster Germany
Walter Brendel Centre of Experimental Medicine University Hospital LMU Munich D 81377 Munich Germany
Zobrazit více v PubMed
Gerhardt H, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell. Biol. 2003;161:1163–1177. doi: 10.1083/jcb.200302047. PubMed DOI PMC
Jakobsson L, et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell. Biol. 2010;12:943–953. doi: 10.1038/ncb2103. PubMed DOI
Gaengel K, et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev. Cell. 2012;23:587–599. doi: 10.1016/j.devcel.2012.08.005. PubMed DOI
Bentley K, et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell Biol. 2014;16:309–321. doi: 10.1038/ncb2926. PubMed DOI
Yamamoto H, et al. Integrin beta1 controls VE-cadherin localization and blood vessel stability. Nat. Commun. 2015;6:6429. doi: 10.1038/ncomms7429. PubMed DOI
Abraham S, et al. VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr. Biol. 2009;19:668–674. doi: 10.1016/j.cub.2009.02.057. PubMed DOI
Carmeliet P, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell. 1999;98:147–157. doi: 10.1016/S0092-8674(00)81010-7. PubMed DOI
Abu Taha A, Taha M, Seebach J, Schnittler HJ. ARP2/3-mediated junction-associated lamellipodia control VE-cadherin-based cell junction dynamics and maintain monolayer integrity. Mol. Biol. Cell. 2014;25:245–256. doi: 10.1091/mbc.E13-07-0404. PubMed DOI PMC
Rajput C, et al. Neural Wiskott-Aldrich syndrome protein (N-WASP)-mediated p120-catenin interaction with Arp2-Actin complex stabilizes endothelial adherens junctions. J. Biol. Chem. 2013;288:4241–4250. doi: 10.1074/jbc.M112.440396. PubMed DOI PMC
Krause M, Gautreau A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell. Biol. 2014;15:577–590. doi: 10.1038/nrm3861. PubMed DOI
Breslin JW, Zhang XE, Worthylake RA, Souza-Smith FM. Involvement of local lamellipodia in endothelial barrier function. PLoS ONE. 2015;10:e0117970. doi: 10.1371/journal.pone.0117970. PubMed DOI PMC
Seebach J, et al. The CellBorderTracker, a novel tool to quantitatively analyze spatiotemporal endothelial junction dynamics at the subcellular level. Histochem. Cell. Biol. 2015;144:517–532. doi: 10.1007/s00418-015-1357-8. PubMed DOI
Abella JV, et al. Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat. Cell Biol. 2016;18:76–86. doi: 10.1038/ncb3286. PubMed DOI
Hall A. Rho GTPases and the control of cell behaviour. Biochem. Soc. Trans. 2005;33:891–895. doi: 10.1042/BST0330891. PubMed DOI
Hayer A, et al. Engulfed cadherin fingers are polarized junctional structures between collectively migrating endothelial cells. Nat. Cell. Biol. 2016;18:1311–1323. doi: 10.1038/ncb3438. PubMed DOI PMC
Millan J, et al. Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol. 2010;8:11. doi: 10.1186/1741-7007-8-11. PubMed DOI PMC
Fraccaroli A, et al. Visualization of endothelial actin cytoskeleton in the mouse retina. PLoS. One. 2012;7:e47488. doi: 10.1371/journal.pone.0047488. PubMed DOI PMC
Gelfand MV, et al. Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. Elife. 2014;3:e03720. doi: 10.7554/eLife.03720. PubMed DOI PMC
Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY. Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc. Res. 2010;87:272–280. doi: 10.1093/cvr/cvq144. PubMed DOI PMC
Schnittler HJ, Wilke A, Gress T, Suttorp N, Drenckhahn D. Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium. J. Physiol. 1990;431:379–401. doi: 10.1113/jphysiol.1990.sp018335. PubMed DOI PMC
Li Z, et al. Regulation of PTEN by Rho small GTPases. Nat. Cell. Biol. 2005;7:399–404. doi: 10.1038/ncb1236. PubMed DOI
Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell. Biol. 2003;4:446–456. doi: 10.1038/nrm1128. PubMed DOI
Etienne-Manneville S. Microtubules in cell migration. Annu. Rev. Cell. Dev. Biol. 2013;29:471–499. doi: 10.1146/annurev-cellbio-101011-155711. PubMed DOI
Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat. Rev. Mol. Cell. Biol. 2016;17:97–109. doi: 10.1038/nrm.2015.14. PubMed DOI
McCue S, et al. Shear stress regulates forward and reverse planar cell polarity of vascular endothelium in vivo and in vitro. Circ. Res. 2006;98:939–946. doi: 10.1161/01.RES.0000216595.15868.55. PubMed DOI
Drenckhahn D, Wagner J. Stress fibers in the splenic sinus endothelium in situ: molecular structure, relationship to the extracellular matrix, and contractility. J. Cell. Biol. 1986;102:1738–1747. doi: 10.1083/jcb.102.5.1738. PubMed DOI PMC
Garrett TA, Van Buul JD, Burridge K. VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp. Cell. Res. 2007;313:3285–3297. doi: 10.1016/j.yexcr.2007.05.027. PubMed DOI PMC
Zeng H, Zhao D, Mukhopadhyay D. Flt-1-mediated downregulation of endothelial cell proliferation through pertussis toxin-sensitive G proteins, beta gamma subunits, small GTPase CDC42, and partly by Rac-1. J. Biol. Chem. 2002;277:4003–4009. doi: 10.1074/jbc.M110842200. PubMed DOI
Tarbashevich K, Reichman-Fried M, Grimaldi C, Raz E. Chemokine-Dependent pH elevation at the cell front sustains polarity in directionally migrating zebrafish germ cells. Curr. Biol. 2015;25:1096–1103. doi: 10.1016/j.cub.2015.02.071. PubMed DOI
Kardash E, et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat. Cell. Biol. 2010;12:47–53. doi: 10.1038/ncb2003. PubMed DOI
Nakatsu, M. N., Davis, J. & Hughes, C. C. Optimized fibrin gel bead assay for the study of angiogenesis. J. Vis. Exp. 186 (2007). PubMed PMC
Nehls V, Drenckhahn D. A microcarrier-based cocultivation system for the investigation of factors and cells involved in angiogenesis in three-dimensional fibrin matrices in vitro. Histochem. Cell. Biol. 1995;104:459–466. doi: 10.1007/BF01464336. PubMed DOI
Phng LK, Stanchi F, Gerhardt H. Filopodia are dispensable for endothelial tip cell guidance. Development. 2013;140:4031–4040. doi: 10.1242/dev.097352. PubMed DOI
Pelham RJ, Chang F. Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature. 2002;419:82–86. doi: 10.1038/nature00999. PubMed DOI
Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med. 2013;3:a006569. doi: 10.1101/cshperspect.a006569. PubMed DOI PMC
De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P. Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler. Thromb. Vasc. Biol. 2009;29:639–649. doi: 10.1161/ATVBAHA.109.185165. PubMed DOI
Hellstrom M, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007;445:776–780. doi: 10.1038/nature05571. PubMed DOI
Ehling M, Adams S, Benedito R, Adams RH. Notch controls retinal blood vessel maturation and quiescence. Development. 2013;140:3051–3061. doi: 10.1242/dev.093351. PubMed DOI
Sauteur L, et al. Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep. 2014;9:504–513. doi: 10.1016/j.celrep.2014.09.024. PubMed DOI
Lampugnani MG, et al. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha- catenin with vascular endothelial cadherin (VE-cadherin) J. Cell. Biol. 1995;129:203–217. doi: 10.1083/jcb.129.1.203. PubMed DOI PMC
Benedito R, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 2012;484:110–114. doi: 10.1038/nature10908. PubMed DOI
Tsuji-Tamura K, Ogawa M. Inhibition of the PI3K-Akt and mTORC1 signaling pathways promotes the elongation of vascular endothelial cells. J. Cell. Sci. 2016;129:1165–1178. doi: 10.1242/jcs.178434. PubMed DOI
Seebach J, et al. Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. Cardiovasc. Res. 2007;75:596–607. doi: 10.1016/j.cardiores.2007.04.017. PubMed DOI
Wang Y, et al. Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development. 2010;137:3119–3128. doi: 10.1242/dev.048785. PubMed DOI PMC
Sugden WW, et al. Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nat. Cell. Biol. 2017;19:653–665. doi: 10.1038/ncb3528. PubMed DOI PMC
Hasan SS, et al. Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat. Cell. Biol. 2017;19:928–940. doi: 10.1038/ncb3574. PubMed DOI PMC
Lee CC, et al. Disrupting the CXCL12/CXCR4 axis disturbs the characteristics of glioblastoma stem-like cells of rat RG2 glioblastoma. Cancer Cell. Int. 2013;13:85. doi: 10.1186/1475-2867-13-85. PubMed DOI PMC
Gebala V, Collins R, Geudens I, Phng LK, Gerhardt H. Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat. Cell Biol. 2016;18:443–450. doi: 10.1038/ncb3320. PubMed DOI PMC
Kametani Y, Takeichi M. Basal-to-apical cadherin flow at cell junctions. Nat. Cell Biol. 2007;9:92–U118. doi: 10.1038/ncb1520. PubMed DOI
Levayer R, Lecuit T. Oscillation and polarity of E-cadherin asymmetries control actomyosin flow patterns during morphogenesis. Dev. Cell. 2013;26:162–175. doi: 10.1016/j.devcel.2013.06.020. PubMed DOI
Kage F, et al. FMNL formins boost lamellipodial force generation. Nat. Commun. 2017;8:14832. doi: 10.1038/ncomms14832. PubMed DOI PMC
Bentley K, Mariggi G, Gerhardt H, Bates PA. Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput. Biol. 2009;5:e1000549. doi: 10.1371/journal.pcbi.1000549. PubMed DOI PMC
Nakayama M, et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat. Cell Biol. 2013;15:249–260. doi: 10.1038/ncb2679. PubMed DOI PMC
Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat. Cell Biol. 2006;8:1223–1234. doi: 10.1038/ncb1486. PubMed DOI
Wright TJ, Leach L, Shaw PE, Jones P. Dynamics of vascular endothelial-cadherin and beta-catenin localization by vascular endothelial growth factor-induced angiogenesis in human umbilical vein cells. Exp. Cell. Res. 2002;280:159–168. doi: 10.1006/excr.2002.5636. PubMed DOI
Luxton GW, Gundersen GG. Orientation and function of the nuclear-centrosomal axis during cell migration. Curr. Opin. Cell. Biol. 2011;23:579–588. doi: 10.1016/j.ceb.2011.08.001. PubMed DOI PMC
Waterman-Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat. Cell Biol. 1999;1:45–50. doi: 10.1038/9018. PubMed DOI
Fraccaroli A, et al. Endothelial alpha-parvin controls integrity of developing vasculature and is required for maintenance of cell-cell junctions. Circ. Res. 2015;117:29–40. doi: 10.1161/CIRCRESAHA.117.305818. PubMed DOI PMC
Nohata N, et al. Temporal-specific roles of Rac1 during vascular development and retinal angiogenesis. Dev. Biol. 2016;411:183–194. doi: 10.1016/j.ydbio.2016.02.005. PubMed DOI
Hoelzle MK, Svitkina T. The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol. Biol. Cell. 2012;23:310–323. doi: 10.1091/mbc.E11-08-0719. PubMed DOI PMC
Kronstein R, et al. Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovasc. Res. 2012;93:130–140. doi: 10.1093/cvr/cvr256. PubMed DOI
Ballestrem C, Wehrle-Haller B, Hinz B, Imhof BA. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol. Biol. Cell. 2000;11:2999–3012. doi: 10.1091/mbc.11.9.2999. PubMed DOI PMC
Wojciak-Stothard B, Ridley AJ. Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J. Cell Biol. 2003;161:429–439. doi: 10.1083/jcb.200210135. PubMed DOI PMC
Dieckmann-Schuppert A, Schnittler HJ. A simple assay for quantification of protein in tissue sections, cell cultures, and cell homogenates, and of protein immobilized on solid surfaces. Cell Tissue Res. 1997;288:119–126. doi: 10.1007/s004410050799. PubMed DOI
Claxton S, et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis. 2008;46:74–80. doi: 10.1002/dvg.20367. PubMed DOI
Koch U, et al. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 2008;205:2515–2523. doi: 10.1084/jem.20080829. PubMed DOI PMC
Kohli, P., Kumar, P. & Torr, P. P3 and Beyond: Solving Energies with Higher Order Cliques. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) 1–8 (IEEE, Los Alamitos, USA, 2007).
Zhang, J., Djolonga, J. & Krause, A. International Conference on Computer Vision (ICCV, Los Alamitos, USA, 2015).
Sixta, T. & Flach, B. 19th International Conference on Medical Image Computing and Computer Assisted Intervention (Springer International Publishing AG, Cham, Switzerland, 2016).