Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution

. 2017 Dec 21 ; 5 (1) : 162. [epub] 20171221

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29268781

Grantová podpora
BES-2012-052361 Secretaría de Estado de Investigación, Desarrollo e Innovación - International
AGL2014-58933-P (cofunded with FEDER funds) Secretaría de Estado de Investigación, Desarrollo e Innovación - International
17-04828S Grantová Agentura České Republiky - International
CGL2016-76273-P [AEI/FEDER, EU] AEI/FEDER/EU - International
CGL2015-71523-REDC (Acciones de dinamización "REDES DE EXCELENCIA" CONSOLIDER) Dirección General de Investigación Científica y Técnica - International
Prometeo II/2014/012 "AQUAMET" Generalitat Valenciana - International

Odkazy

PubMed 29268781
PubMed Central PMC5740887
DOI 10.1186/s40168-017-0376-1
PII: 10.1186/s40168-017-0376-1
Knihovny.cz E-zdroje

BACKGROUND: Fish skin mucosal surfaces (SMS) are quite similar in composition and function to some mammalian MS and, in consequence, could constitute an adequate niche for the evolution of mucosal aquatic pathogens in natural environments. We aimed to test this hypothesis by searching for metagenomic and genomic evidences in the SMS-microbiome of a model fish species (Anguilla Anguilla or eel), from different ecosystems (four natural environments of different water salinity and one eel farm) as well as the water microbiome (W-microbiome) surrounding the host. RESULTS: Remarkably, potentially pathogenic Vibrio monopolized wild eel SMS-microbiome from natural ecosystems, Vibrio anguillarum/Vibrio vulnificus and Vibrio cholerae/Vibrio metoecus being the most abundant ones in SMS from estuary and lake, respectively. Functions encoded in the SMS-microbiome differed significantly from those in the W-microbiome and allowed us to predict that successful mucus colonizers should have specific genes for (i) attachment (mainly by forming biofilms), (ii) bacterial competence and communication, and (iii) resistance to mucosal innate immunity, predators (amoeba), and heavy metals/drugs. In addition, we found several mobile genetic elements (mainly integrative conjugative elements) as well as a series of evidences suggesting that bacteria exchange DNA in SMS. Further, we isolated and sequenced a V. metoecus strain from SMS. This isolate shares pathogenicity islands with V. cholerae O1 from intestinal infections that are absent in the rest of sequenced V. metoecus strains, all of them from water and extra-intestinal infections. CONCLUSIONS: We have obtained metagenomic and genomic evidence in favor of the hypothesis on the role of fish mucosal surfaces as a specialized habitat selecting microbes capable of colonizing and persisting on other comparable mucosal surfaces, e.g., the human intestine.

Zobrazit více v PubMed

Gomez D, Sunyer JO, Salinas I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol. 2013;35:1729–1739. doi: 10.1016/j.fsi.2013.09.032. PubMed DOI PMC

Pérez T, Balcázar JL, Ruiz-Zarzuela I, Halaihel N, Vendrell D, de Blas I, et al. Host-microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 2010;3:355–360. doi: 10.1038/mi.2010.12. PubMed DOI

Gómez GD, Balcázar JL. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol Med Microbiol. 2008;52:145–154. doi: 10.1111/j.1574-695X.2007.00343.x. PubMed DOI

Shapiro BJ, Levade I, Kovacikova G, Taylor RK, Almagro-Moreno S. Origins of pandemic Vibrio cholerae from environmental gene pools. Nat Microbiol. 2016;2:16240. doi: 10.1038/nmicrobiol.2016.240. PubMed DOI

Jackson RW, Vinatzer B, Arnold DL, Dorus S, Murillo J. The influence of the accessory genome on bacterial pathogen evolution. Mob Genet Elements. 2011;1:55–65. doi: 10.4161/mge.1.1.16432. PubMed DOI PMC

Ochman H, Moran NA. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science. 2001;292:1096–1099. doi: 10.1126/science.1058543. PubMed DOI

Tsukamoto K. Oceanic biology: spawning of eels near a seamount. Nature. 2006;439:929. doi: 10.1038/439929a. PubMed DOI

Carda-Dieguez M, Ghai R, Rodriguez-Valera F, Amaro C. Metagenomics of the mucosal microbiota of European eels. Genome Announc. 2014;2:e01132–e01114. doi: 10.1128/genomeA.01132-14. PubMed DOI PMC

Ghai R, Hernandez CM, Picazo A, Mizuno CM, Ininbergs K, Díez B, et al. Metagenomes of Mediterranean coastal lagoons. Sci Rep. 2012 [cited 2013 Dec 11];2:490. A. PubMed PMC

Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics. 2010;11:485. doi: 10.1186/1471-2105-11-485. PubMed DOI PMC

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008 [cited 2014 Jan 9];18:821–9. PubMed PMC

Carda-Diéguez M, Mizuno CM, Ghai R, Rodriguez-Valera F, Amaro C. Replicating phages in the epidermal mucosa of the eel (Anguilla anguilla) Front Microbiol. 2015;6:3. PubMed PMC

Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000 [cited 2013 Dec 27];16:2–3. PubMed

Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999 [cited 2013 Dec 27];

Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. doi: 10.1186/1471-2105-11-119. PubMed DOI PMC

Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008 [cited 2014 Jan 21];9:386. PubMed PMC

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004 [cited 2013 Dec 16];32:D277–80. PubMed PMC

Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J. ACT: the Artemis comparison tool. Bioinformatics 2005 [cited 2013 Dec 13];21:3422–3. PubMed

Söding J. Protein homology detection by HMM-HMM comparison. Bioinformatics 2005 [cited 2014 Jul 17];21:951–60. PubMed

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011 [cited 2014 Jan 21];21:1552–60. PubMed PMC

Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009 [cited 2013 Dec 15];37:D141–5. PubMed PMC

Cerdà-Cuéllar M, Jofre J, Blanch AR. A selective medium and a specific probe for detection of Vibrio vulnificus. Appl Environ Microbiol. 2000;66:855–859. doi: 10.1128/AEM.66.2.855-859.2000. PubMed DOI PMC

Sanjuan E, Amaro C. Multiplex PCR assay for detection of Vibrio vulnificus biotype 2 and simultaneous discrimination of Serovar E strains. Appl Environ Microbiol. 2007;73:2029–2032. doi: 10.1128/AEM.02320-06. PubMed DOI PMC

Grant JR, Arantes AS, Stothard P. Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics. 2012;13:202. doi: 10.1186/1471-2164-13-202. PubMed DOI PMC

Siguier P. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–D36. doi: 10.1093/nar/gkj014. PubMed DOI PMC

Kichenaradja P, Siguier P, Perochon J, Chandler M. ISbrowser: an extension of ISfinder for visualizing insertion sequences in prokaryotic genomes. Nucl Acids Res. 2010;38:D62–D68. doi: 10.1093/nar/gkp947. PubMed DOI PMC

Hunter S, Corbett M, Denise H, Fraser M, Gonzalez-Beltran A, Hunter C, et al. EBI metagenomics—a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res. 2014;42:D600–D606. doi: 10.1093/nar/gkt961. PubMed DOI PMC

Kirchberger PC, Turnsek M, Hunt DE, Haley BJ, Colwell RR, Polz MF, et al. Vibrio metoecus sp. nov., a close relative of Vibrio cholerae isolated from coastal brackish ponds and clinical specimens. Int J Syst Evol Microbiol. 2014;64:3208–14. PubMed

Amaro C, Biosca EG. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol. 1996;62:1454–1457. PubMed PMC

Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H. Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis. 2011;34:643–661. doi: 10.1111/j.1365-2761.2011.01279.x. PubMed DOI

Valiente E, Lee C-T, Hor L-I, Fouz B, Amaro C. Role of the metalloprotease Vvp and the virulence plasmid pR99 of Vibrio vulnificus serovar E in surface colonization and fish virulence. Environ Microbiol. 2008 [cited 2014 Nov 26];10:328–38. PubMed

Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL, Crosa JH. Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun. 2011 [cited 2014 Oct 20];79:2889–900. PubMed PMC

Orata FD, Kirchberger PC, Méheust R, Barlow EJ, Tarr CL, Boucher Y. The dynamics of genetic interactions between Vibrio metoecus and Vibrio cholerae, two close relatives co-occurring in the environment. Genome Biol. Evol. 2015;7:2941–2954. doi: 10.1093/gbe/evv193. PubMed DOI PMC

Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996;272:1910–1914. doi: 10.1126/science.272.5270.1910. PubMed DOI

Faruque SM, Asadulghani, Kamruzzaman M, Nandi RK, Ghosh AN, Nair GB, et al. RS1 element of Vibrio cholerae can propagate horizontally as a filamentous phage exploiting the morphogenesis genes of CTXphi. Infect Immun. 2002;70:163–170. doi: 10.1128/IAI.70.1.163-170.2002. PubMed DOI PMC

Yi S-W, You M-J, Cho H-S, Lee C-S, Kwon J-K, Shin G-W. Molecular characterization of Aeromonas species isolated from farmed eels (Anguilla japonica). Vet Microbiol. 2013;164:195–200. PubMed

Bisharat N, Agmon V, Finkelstein R, Raz R, Ben-Dror G, Lerner L, et al. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet. 1999;354:1421–1424. doi: 10.1016/S0140-6736(99)02471-X. PubMed DOI

Roig FJ, González-Candelas F, Amaro C. Domain organization and evolution of multifunctional autoprocessing repeats-in-toxin (MARTX) toxin in Vibrio vulnificus. Appl Environ Microbiol. 2011;77:657–668. doi: 10.1128/AEM.01806-10. PubMed DOI PMC

Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–5702. doi: 10.1093/nar/gki866. PubMed DOI PMC

Dalsgaard A, Serichantalergs O, Forslund A, Lin W, Mekalanos J, Mintz E, et al. Clinical and environmental isolates of Vibrio cholerae serogroup O141 carry the CTX phage and the genes encoding the toxin-coregulated pili. J Clin Microbiol. 2001;39:4086–4092. doi: 10.1128/JCM.39.11.4086-4092.2001. PubMed DOI PMC

Ma AT, Mekalanos JJ. In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci U S A. 2010 [cited 2013 Nov 14];107:4365–70. PubMed PMC

Hachani A, Lossi NS, Hamilton A, Jones C, Bleves S, Albesa-Jové D, et al. Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem. 2011 [cited 2013 Nov 14];286:12317–27. PubMed PMC

Sato H, Frank DW. Intoxication of host cells by the T3SS Phospholipase ExoU: PI(4,5)P2-associated, cytoskeletal collapse and late phase membrane blebbing. Samuel JE, editor. PLoS One. 2014;9:e103127. doi: 10.1371/journal.pone.0103127. PubMed DOI PMC

Ángeles EM. An overview of the immunological defenses in fish skin. ISRN Immunol. 2012;2012:1–29. doi: 10.5402/2012/853470. DOI

van Ginneken VJT, Maes GE. The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: a literature review. Rev Fish Biol Fish. 2005;15:367–98.

Bordas MA, Balebona MC, Rodriguez-Maroto JM, Borrego JJ, Morinigo MA. Chemotaxis of pathogenic Vibrio strains towards mucus surfaces of gilt-head sea bream (Sparus aurata L.) Appl. Environ. Microbiol. 1998;64:1573–1575. PubMed PMC

Singleton FL, Attwell R, Jangi S, Colwell RR. Effects of temperature and salinity on Vibrio cholerae growth. Appl Environ Microbiol. 1982;44:1047–1058. PubMed PMC

Singleton FL, Attwell RW, Jangi MS, Colwell RR. Influence of salinity and organic nutrient concentration on survival and growth of Vibrio cholerae in aquatic microcosms. Appl Environ Microbiol. 1982;43:1080–1085. PubMed PMC

Amaro C, Biosca EG, Fouz B, Alcaide E, Esteve C. Evidence that water transmits Vibrio vulnificus biotype 2 infections to eels. Appl Environ Microbiol. 1995;61:1133–1137. PubMed PMC

Tison DL, Nishibuchi M, Greenwood JD, Seidler RJ. Vibrio vulnificus biogroup 2: new biogroup pathogenic for eels. Appl Environ Microbiol. 1982;44:640–646. PubMed PMC

Satchell KJF. Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of Vibrios. Microbiol Spectr. 2015;3. doi:10.1128/microbiolspec.VE-0002-2014. PubMed PMC

Lee C-T, Pajuelo D, Llorens A, Chen Y-H, Leiro JM, Padrós F, et al. MARTX of Vibrio vulnificus biotype 2 is a virulence and survival factor. Environ Microbiol. 2013 [cited 2013 Oct 31];15:419–32. PubMed

Kwak JS, Jeong H-G, Satchell KJF. Vibrio vulnificus rtxA1 gene recombination generates toxin variants with altered potency during intestinal infection. Proc Natl Acad Sci U S A. 2011;108:1645–1650. doi: 10.1073/pnas.1014339108. PubMed DOI PMC

Amaro C, Sanjuán E, Fouz B, Pajuelo D, Lee C-T, Hor L-I, et al. The fish pathogen Vibrio vulnificus biotype 2: epidemiology, phylogeny, and virulence factors involved in warm-water vibriosis. Microbiol Spectr. 2015;3:1–23. PubMed

Fouz B, Larsen JL, Amaro C. Vibrio vulnificus serovar A: an emerging pathogen in European anguilliculture. J Fish Dis. 2006;29:285–291. doi: 10.1111/j.1365-2761.2006.00719.x. PubMed DOI

Oppermann UC, Belai I, Maser E. Antibiotic resistance and enhanced insecticide catabolism as consequences of steroid induction in the gram-negative bacterium Comamonas testosteroni. J Steroid Biochem Mol Biol. 1996;58:217–223. doi: 10.1016/0960-0760(96)00021-0. PubMed DOI

Ma Y-F, Zhang Y, Zhang J-Y, Chen D-W, Zhu Y, Zheng H, et al. The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Appl Environ Microbiol. 2009 [cited 2013 Dec 21];75:6812–9. PubMed PMC

Romero J, Gloria C and Navarrete P. Antibiotics in Aquaculture – Use, Abuse and Alternatives, Health and Environment in Aquaculture, Dr. Edmir Carvalho (Ed.), InTech. 2012.

Haley BJ, Grim CJ, Hasan NA, Choi S, Chun J, Brettin TS, et al. Comparative genomic analysis reveals evidence of two novel Vibrio species closely related to V. cholerae. 2010. PubMed PMC

Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A. 1998;95:3134–3139. doi: 10.1073/pnas.95.6.3134. PubMed DOI PMC

Dolores J, Satchell KJF. Analysis of Vibrio cholerae genome sequences reveals unique rtxA variants in environmental strains and an rtxA-null mutation in recent altered El Tor isolates. MBio. 2013;4:e00624. doi: 10.1128/mBio.00624-12. PubMed DOI PMC

Wyckoff EE, Stoebner JA, Reed KE, Payne SM. Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis. J Bacteriol. 1997;179:7055–7062. doi: 10.1128/jb.179.22.7055-7062.1997. PubMed DOI PMC

Stoebner JA, Butterton JR, Calderwood SB, Payne SM. Identification of the vibriobactin receptor of Vibrio cholerae. J Bacteriol. 1992;174:3270–4. PubMed PMC

Canet R, Chaves C, Pomares F, Albiach R. Agricultural use of sediments from the Albufera Lake (eastern Spain) Agric Ecosyst Environ. 2003;95:29–36. doi: 10.1016/S0167-8809(02)00171-8. DOI

Suárez-Serrano A, Alcaraz C, Ibáñez C, Trobajo R, Barata C. Procambarus clarkii as a bioindicator of heavy metal pollution sources in the lower Ebro River and Delta. Ecotoxicol Environ Saf. 2010;73:280–286. doi: 10.1016/j.ecoenv.2009.11.001. PubMed DOI

Coello WF, Khan MA. Protection against heavy metal toxicity by mucus and scales in fish. Arch Environ Contam Toxicol. 1996;30:319–326. doi: 10.1007/BF00212289. PubMed DOI

Kaplan E, Ofek M, Jurkevitch E, Cytryn E. Characterization of fluoroquinolone resistance and qnr diversity in Enterobacteriaceae from municipal biosolids. Front Microbiol. 2013;4 PubMed PMC

Weber W, Henkes H, Möller P, Bade K, Kühne D. Toxic spongiform leucoencephalopathy after inhaling heroin vapour. Eur Radiol. 1998;8:749–755. doi: 10.1007/s003300050467. PubMed DOI

Córdova-Kreylos AL, Scow KM. Effects of ciprofloxacin on salt marsh sediment microbial communities. ISME J. 2007;1:585–595. doi: 10.1038/ismej.2007.71. PubMed DOI

Kümmerer K. Antibiotics in the aquatic environment—a review—part I. Chemosphere. 2009;75:417–434. doi: 10.1016/j.chemosphere.2008.11.086. PubMed DOI

Michalska M, Wolf P. Pseudomonas exotoxin a: optimized by evolution for effective killing. Front Microbiol. 2015;6:963. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...