Decision-making in plants under competition

. 2017 Dec 21 ; 8 (1) : 2235. [epub] 20171221

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29269832
Odkazy

PubMed 29269832
PubMed Central PMC5740169
DOI 10.1038/s41467-017-02147-2
PII: 10.1038/s41467-017-02147-2
Knihovny.cz E-zdroje

Plants can plastically respond to light competition in three strategies, comprising vertical growth, which promotes competitive dominance; shade tolerance, which maximises performance under shade; or lateral growth, which offers avoidance of competition. Here, we test the hypothesis that plants can 'choose' between these responses, according to their abilities to competitively overcome their neighbours. We study this hypothesis in the clonal plant Potentilla reptans using an experimental setup that simulates both the height and density of neighbours, thus presenting plants with different light-competition scenarios. Potentilla reptans ramets exhibit the highest vertical growth under simulated short-dense neighbours, highest specific leaf area (leaf area/dry mass) under tall-dense neighbours, and tend to increase total stolon length under tall-sparse neighbours. These responses suggest shifts between 'confrontational' vertical growth, shade tolerance and lateral-avoidance, respectively, and provide evidence that plants adopt one of several alternative plastic responses in a way that optimally corresponds to prevailing light-competition scenarios.

Komentář v

PubMed

Zobrazit více v PubMed

Callaway RM, Pennings SC, Richards CL. Phenotypic plasticity and interactions among plants. Ecology. 2003;84:1115–1128. doi: 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2. DOI

Schmitt J, Stinchcombe JR, Heschel MS, Huber H. The adaptive evolution of plasticity: phytochrome-mediated shade avoidance responses. Integr. Comp. Biol. 2003;43:459–469. doi: 10.1093/icb/43.3.459. PubMed DOI

Schmitt J, Wulff RD. Light spectral quality, phytochrome and plant competition. Trends Ecol. Evol. 1993;8:47–51. doi: 10.1016/0169-5347(93)90157-K. PubMed DOI

Pigliucci, M. Phenotypic Plasticity: Beyond Nature and Nurture (Johns Hopkins University Press, Baltimore, 2001).

Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant. Sci. 2000;5:537–542. doi: 10.1016/S1360-1385(00)01797-0. PubMed DOI

Valladares F, Niinemets Uuml. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 2008;39:237–257. doi: 10.1146/annurev.ecolsys.39.110707.173506. DOI

Vandenbussche F, Pierik R, Millenaar FF, Voesenek LACJ, Van Der Straeten D. Reaching out of the shade. Curr. Opin. Plant. Biol. 2005;8:462–468. doi: 10.1016/j.pbi.2005.07.007. PubMed DOI

Gommers CMM, Visser EJW, Onge KRS, Voesenek LACJ, Pierik R. Shade tolerance: when growing tall is not an option. Trends Plant. Sci. 2013;18:65–71. doi: 10.1016/j.tplants.2012.09.008. PubMed DOI

Ballaré CL, Scopel AL, Sánchez RA. Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science. 1990;247:329–332. doi: 10.1126/science.247.4940.329. PubMed DOI

van Kleunen M, Fischer M. Adaptive evolution of plastic foraging responses in a clonal plant. Ecology. 2001;82:3309–3319. doi: 10.1890/0012-9658(2001)082[3309:AEOPFR]2.0.CO;2. DOI

Smith H. Phytochromes and light signal perception by plants—an emerging synthesis. Nature. 2000;407:585–591. doi: 10.1038/35036500. PubMed DOI

Pierik R, de Wit M. Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues. J. Exp. Bot. 2014;65:2815–2824. doi: 10.1093/jxb/ert389. PubMed DOI

Crepy MA, Casal JJ. Photoreceptor‐mediated kin recognition in plants. New Phytol. 2015;205:329–338. doi: 10.1111/nph.13040. PubMed DOI

de Wit M, et al. Plant neighbor detection through touching leaf tips precedes phytochrome signals. Proc. Natl Acad. Sci. USA. 2012;109:14705–14710. doi: 10.1073/pnas.1205437109. PubMed DOI PMC

Pierik R, Cuppens MLC, Voesenek LACJ, Visser EJW. Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol. 2004;136:2928–2936. doi: 10.1104/pp.104.045120. PubMed DOI PMC

Falster DS, Westoby M. Plant height and evolutionary games. Trends Ecol. Evol. 2003;18:337–343. doi: 10.1016/S0169-5347(03)00061-2. DOI

Givnish TJ. On the adaptive significance of leaf height in forest herbs. Am. Nat. 1982;120:353–381. doi: 10.1086/283995. DOI

Novoplansky A. Picking battles wisely: plant behaviour under competition. Plant Cell Environ. 2009;32:726–741. doi: 10.1111/j.1365-3040.2009.01979.x. PubMed DOI

Griffith TM, Sultan SE. Shade tolerance plasticity in response to neutral vs green shade cues in Polygonum species of contrasting ecological breadth. New Phytol. 2005;166:141–148. doi: 10.1111/j.1469-8137.2004.01277.x. PubMed DOI

Portsmuth A, Niinemets Uuml. Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Funct. Ecol. 2007;21:61–77. doi: 10.1111/j.1365-2435.2006.01208.x. DOI

Novoplansky, A., Cohen, D. & Sachs, T. How portulaca seedlings avoid their neighbours. Oecologia82, 490–493 (1990). PubMed

Hutchings M, Wijesinghe D. Performance of a clonal species in patchy environments: effects of environmental context on yield at local and whole-plant scales. Evol. Ecol. 2008;22:313–324. doi: 10.1007/s10682-007-9178-4. DOI

Weijschedé J, Martínková J, De Kroon H, Huber H. Shade avoidance in Trifolium repens: costs and benefits of plasticity in petiole length and leaf size. New Phytol. 2006;172:655–666. doi: 10.1111/j.1469-8137.2006.01885.x. PubMed DOI

Bittebiere AK, Renaud N, Clément B, Mony C. Morphological response to competition for light in the clonal Trifolium repens (Fabaceae) Am. J. Bot. 2012;99:646–654. doi: 10.3732/ajb.1100487. PubMed DOI

Henry HAL, Aarssen LW. Inter- and intraspecific relationships between shade tolerance and shade avoidance in temperate trees. Oikos. 2001;93:477–487. doi: 10.1034/j.1600-0706.2001.930313.x. DOI

Herben, T. & Novoplansky, A. Fight or flight: plastic behavior under self-generated heterogeneity. Evol. Ecol.24, 1521–1536 (2010).

Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology. 2000;81:1925–1936. doi: 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2. DOI

Kitajima K. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia. 1994;98:419–428. doi: 10.1007/BF00324232. PubMed DOI

Dudley S, Schmitt J. Genetic differentiation in morphological responses to simulated foliage shade between populations of Impatiens capensis from open and woodland sites. Funct. Ecol. 1995;9:655–666. doi: 10.2307/2390158. DOI

van Hinsberg A, van Tienderen P. Variation in growth form in relation to spectral light quality (red/far-red ratio) in Plantago lanceolata L. in sun and shade populations. Oecologia. 1997;111:452–459. doi: 10.1007/s004420050258. PubMed DOI

von Wettberg EJ, Schmitt J. Physiological mechanism of population differentiation in shade-avoidance responses between woodland and clearing genotypes of Impatiens capensis. Am. J. Bot. 2005;92:868–874. doi: 10.3732/ajb.92.5.868. PubMed DOI

Weinig C. Plasticity versus canalization: population differences in the timing of shade-avoidance responses. Evolution. 2000;54:441–451. doi: 10.1111/j.0014-3820.2000.tb00047.x. PubMed DOI

Morgan D, Smith H. A systematic relationship between phytochrome-controlled development and species habitat, for plants grown in simulated natural radiation. Planta. 1979;145:253–258. doi: 10.1007/BF00454449. PubMed DOI

Nagashima H, Hikosaka K. Plants in a crowded stand regulate their height growth so as to maintain similar heights to neighbours even when they have potential advantages in height growth. Ann. Bot. 2011;208:207–214. doi: 10.1093/aob/mcr109. PubMed DOI PMC

Nagashima H, Hikosaka K. Not only light quality but also mechanical stimuli are involved in height convergence in crowded Chenopodium album stands. New Phytol. 2012;195:803–811. doi: 10.1111/j.1469-8137.2012.04218.x. PubMed DOI

Vermeulen PJ, Anten NP, Schieving F, Werger MJ, During HJ. Height convergence in response to neighbour growth: genotypic differences in the stoloniferous plant Potentilla reptans. New Phytol. 2008;177:688–697. doi: 10.1111/j.1469-8137.2007.02301.x. PubMed DOI

Weiner J, Thomas SC. Competition and allometry in three species of annual plants. Ecology. 1992;73:648–656. doi: 10.2307/1940771. DOI

Weinig C. Differing selection in alternative competitive environments: shade avoidance responses and germination timing. Evolution. 2000;54:124–136. doi: 10.1111/j.0014-3820.2000.tb00013.x. PubMed DOI

Semchenko M, Zobel K. The role of leaf lobation in elongation responses to shade in the rosette-forming forb Serratula tinctoria (Asteraceae) Ann. Bot. 2007;100:83–90. doi: 10.1093/aob/mcm074. PubMed DOI PMC

Leeflang L, During H, Werger M. The role of petioles in light acquisition by Hydrocotyle vulgaris L. in a vertical light gradient. Oecologia. 1998;117:235–238. doi: 10.1007/s004420050653. PubMed DOI

Shemesh H, Arbiv A, Gersani M, Ovadia O, Novoplansky A. The effects of nutrient dynamics on root patch choice. PLoS ONE. 2010;5:e10824. doi: 10.1371/journal.pone.0010824. PubMed DOI PMC

Shemesh H, Rosen R, Eshel G, Novoplansky A, Ovadia O. The effect of steepness of temporal resource gradients on spatial root allocation. Plant Signal. Behav. 2011;6:1356–1360. doi: 10.4161/psb.6.9.16444. PubMed DOI PMC

Shemesh H, Ovadia O, Novoplansky A. Anticipating future conditions via trajectory sensitivity. Plant Signal. Behav. 2010;5:1501–1503. doi: 10.4161/psb.5.11.13660. PubMed DOI PMC

Novoplansky A. Ecological implications of the determination of branch hierarchies. New Phytol. 2003;160:111–118. doi: 10.1046/j.1469-8137.2003.00871.x. PubMed DOI

Cipollini DF, Schultz JC. Exploring cost constraints on stem elongation in plants using phenotypic manipulation. Am. Nat. 1999;153:236–242. doi: 10.1086/303164. PubMed DOI

van Kleunen M, Fischer M, Schmid B. Costs of plasticity in foraging characteristics of the clonal plant Ranunculus reptans. Evolution. 2000;54:1947–1955. doi: 10.1111/j.0014-3820.2000.tb01239.x. PubMed DOI

Huber H. Plasticity of internodes and petioles in postrate and erect Potentilla Species. Funct. Ecol. 1996;10:401–409. doi: 10.2307/2390290. DOI

Novoplansky A. Developmental responses of individual Onobrychis plants to spatial heterogeneity. Vegetatio. 1996;127:31–39. doi: 10.1007/BF00054845. DOI

Huber H, Fijan A, During H. A comparative study of spacer plasticity in erect and stoloniferous herbs. Oikos. 1998;81:576–586. doi: 10.2307/3546778. DOI

de Kroon H, Hutchings MJ. Morphological plasticity in clonal plants - the foraging concept reconsidered. J. Ecol. 1995;83:143–152. doi: 10.2307/2261158. DOI

Cahill JF, et al. Plants integrate information about nutrients and neighbors. Science. 2010;328:1657. doi: 10.1126/science.1189736. PubMed DOI

Stuefer J, Van Hulzen J, During H. A genotypic trade‐off between the number and size of clonal offspring in the stoloniferous herb Potentilla reptans. J. Evol. Biol. 2002;15:880–884. doi: 10.1046/j.1420-9101.2002.00435.x. DOI

He WM, Alpert P, Yu FH, Zhang LL, Dong M. Reciprocal and coincident patchiness of multiple resources differentially affect benefits of clonal integration in two perennial plants. J. Ecol. 2011;99:1202–1210. doi: 10.1111/j.1365-2745.2011.01848.x. DOI

Huber H, Lukács S, Watson MA. Spatial structure of stoloniferous herbs: an interplay between structural blue-print, ontogeny and phenotypic plasticity. Plant Ecol. 1999;141:107–115. doi: 10.1023/A:1009861521047. DOI

Stuefer JF, Huber H. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia. 1998;117:1–8. doi: 10.1007/s004420050624. PubMed DOI

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Huber H, Stuefer JF. Shade-induced changes in the branching pattern of a stoloniferous herb: functional response or allometric effect? Oecologia. 1997;110:478–486. doi: 10.1007/s004420050183. PubMed DOI

Coleman JS, McConnaughay KD, Ackerly DD. Interpreting phenotypic variation in plants. Trends Ecol. Evol. 1994;9:187–191. doi: 10.1016/0169-5347(94)90087-6. PubMed DOI

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Ser. B (Methodol.) 1995;57:289–300.

Verhoeven KJ, Simonsen KL, McIntyre LM. Implementing false discovery rate control: increasing your power. Oikos. 2005;108:643–647. doi: 10.1111/j.0030-1299.2005.13727.x. DOI

Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data using CANOCO 5 (Cambridge University Press, 2014).

R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2010).

ter Braak, C. J. F. & Šmilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination (Version 5.0). (Biometris, 2012).

Warton DI, Duursma RA, Falster DS, Taskinen S. smatr 3–an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 2012;3:257–259. doi: 10.1111/j.2041-210X.2011.00153.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...