Evolution of plasticity prevents postinvasion extinction of a native forb
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35914140
PubMed Central
PMC9371648
DOI
10.1073/pnas.2118866119
Knihovny.cz E-zdroje
- Klíčová slova
- biological invasions, evolutionary rescue, phenotypic plasticity, shade-response strategies,
- MeSH
- biologická evoluce * MeSH
- bolševník růst a vývoj účinky záření MeSH
- ekosystém MeSH
- extinkce biologická * MeSH
- fenotyp MeSH
- listy rostlin růst a vývoj účinky záření MeSH
- rostliny * účinky záření MeSH
- sluneční záření MeSH
- Veronica * růst a vývoj účinky záření MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Exotic plant invaders pose a serious threat to native plants. However, despite showing inferior competitive ability and decreased performance, native species often subsist in invaded communities. The decline of native populations is hypothesized to be halted and eventually reversed if adaptive evolutionary changes can keep up with the environmental stress induced by invaders, that is, when population extinction is prevented by evolutionary rescue (ER). Nevertheless, evidence for the role of ER in postinvasion persistence of native flora remains scarce. Here, I explored the population density of a native forb, Veronica chamaedrys, and evaluated the changes in the shade-responsive traits of its populations distributed along the invasion chronosequence of an exotic transformer, Heracleum mantegazzianum, which was replicated in five areas. I found a U-shaped population trajectory that paralleled the evolution of plasticity to shade. Whereas V. chamaedrys genotypes from intact, more open sites exhibited a shade-tolerance strategy (pronounced leaf area/mass ratio), reduced light availability at the invaded sites selected for a shade-avoidance strategy (greater internode elongation). Field experiments subsequently confirmed that the shifts in shade-response strategies were adaptive and secured postinvasion population persistence, as indicated by further modeling. Alternative ecological mechanisms (habitat improvement or arrival of immigrants) were less likely explanations than ER for the observed population rebound, although the contribution of maternal effects cannot be dismissed. These results suggest that V. chamaedrys survived because of adaptive evolutionary changes operating on the same timescale as the invasion-induced stress, but the generality of ER for postinvasion persistence of native plants remains unknown.
Zobrazit více v PubMed
Callaway R. M., Aschehoug E. T., Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 290, 521–523 (2000). PubMed
Phillips B. L., Shine R., Adapting to an invasive species: Toxic cane toads induce morphological change in Australian snakes. Proc. Natl. Acad. Sci. U.S.A. 101, 17 150–17 155 (2004). PubMed PMC
Engelkes T., et al. , Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456, 946–948 (2008). PubMed
Alexander J. M., Diez J. M., Levine J. M., Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015). PubMed
Rosenberger D. W., Venette R. C., Aukema B. H., Development of an aggressive bark beetle on novel hosts: Implications for outbreaks in an invaded range. J. Appl. Ecol. 55, 1526–1537 (2018).
Vilà M., et al. , Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011). PubMed
Gurevitch J., Padilla D. K., Are invasive species a major cause of extinctions? Trends Ecol. Evol. 19, 470–474 (2004). PubMed
Sax D. F., Gaines S. D., Colloquium paper: Species invasions and extinction: The future of native biodiversity on islands. Proc. Natl. Acad. Sci. U.S.A. 105 (suppl. 1), 11490–11497 (2008). PubMed PMC
Tilman D., Diversification, biotic interchange, and the universal trade-off hypothesis. Am. Nat. 178, 355–371 (2011). PubMed
Powell K. I., Chase J. M., Knight T. M., Invasive plants have scale-dependent effects on diversity by altering species-area relationships. Science 339, 316–318 (2013). PubMed
Gilbert B., Levine J. M., Plant invasions and extinction debts. Proc. Natl. Acad. Sci. U.S.A. 110, 1744–1749 (2013). PubMed PMC
Strauss S. Y., Lau J. A., Carroll S. P., Evolutionary responses of natives to introduced species: What do introductions tell us about natural communities? Ecol. Lett. 9, 357–374 (2006). PubMed
Strayer D. L., Eviner V. T., Jeschke J. M., Pace M. L., Understanding the long-term effects of species invasions. Trends Ecol. Evol. 21, 645–651 (2006). PubMed
Lankau R. A., Nuzzo V., Spyreas G., Davis A. S., Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl. Acad. Sci. U.S.A. 106, 15362–15367 (2009). PubMed PMC
Dostál P., Müllerová J., Pyšek P., Pergl J., Klinerová T., The impact of an invasive plant changes over time. Ecol. Lett. 16, 1277–1284 (2013). PubMed
Bell G., Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).
Carlson S. M., Cunningham C. J., Westley P. A. H., Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014). PubMed
Gomulkiewicz R., Holt R. D., When does evolution by natural selection prevent extinction? Evolution 49, 201–207 (1995). PubMed
Hufbauer R. A., et al. , Three types of rescue can avert extinction in a changing environment. Proc. Natl. Acad. Sci. U.S.A. 112, 10557–10562 (2015). PubMed PMC
Gomulkiewicz R., Shaw R. G., Evolutionary rescue beyond the models. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120093 (2013). PubMed PMC
Charmantier A., et al. , Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008). PubMed
Pyšek P., Heracleum mantegazzianum in the Czech Republic: Dynamics of spreading from the historical perspective. Folia Geobot. Phytotaxon. 26, 439–454 (1991).
Hejda M., Pyšek P., Jarošík V., Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).
Jandová K., et al. , Long-term impact of Heracleum mantegazzianum invasion on soil chemical and biological characteristics. Soil Biol. Biochem. 68, 270–278 (2014).
Franklin K. A., Shade avoidance. New Phytol. 179, 930–944 (2008). PubMed
Novoplansky A., Picking battles wisely: Plant behaviour under competition. Plant Cell Environ. 32, 726–741 (2009). PubMed
Gruntman M., Groß D., Májeková M., Tielbörger K., Decision-making in plants under competition. Nat. Commun. 8, 2235 (2017). PubMed PMC
Gommers C. M. M., Visser E. J. W., St Onge K. R., Voesenek L. A. C. J., Pierik R., Shade tolerance: When growing tall is not an option. Trends Plant Sci. 18, 65–71 (2013). PubMed
Galloway L. F., Etterson J. R., Transgenerational plasticity is adaptive in the wild. Science 318, 1134–1136 (2007). PubMed
Dostál P., Plant competitive interactions and invasiveness: Searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011). PubMed
Germain R. M., Srivastava D., Angert A. L., Evolution of an inferior competitor increases resistance to biological invasion. Nat. Ecol. Evol. 4, 419–425 (2020). PubMed
Golivets M., Wallin K. F., Neighbour tolerance, not suppression, provides competitive advantage to non-native plants. Ecol. Lett. 21, 745–759 (2018). PubMed
Nomoto H. A., Alexander J. M., Drivers of local extinction risk in alpine plants under warming climate. Ecol. Lett. 24, 1157–1166 (2021). PubMed PMC
Singer M. C., Parmesan C., Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557, 238–241 (2018). PubMed
Latzel V., Pitfalls in ecological research—Transgenerational effects. Folia Geobot. 50, 75–85 (2015).
van Moorsel S. J., et al. , Evidence for rapid evolution in a grassland biodiversity experiment. Mol. Ecol. 28, 4097–4117 (2019). PubMed
Bates D., Maechler M., Bolker B., Walker S., Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2017).
Hothorn T., Bretz F., Westfall P., Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008). PubMed
Hanski I., A practical model of metapopulation dynamics. J. Anim. Ecol. 63, 151–162 (1994).
van Kleunen M., Schlaepfer D. R., Glaettli M., Fischer M., Preadapted for invasiveness: Do species traits or their plastic response to shading differ between invasive and non-invasive plant species in their native range? J. Biogeogr. 38, 1294–1304 (2011).
Zhang Y. Y., Fischer M., Colot V., Bossdorf O., Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol. 197, 314–322 (2013). PubMed
Robinson G. K., That BLUP is a good thing: The estimation of random effects. Stat. Sci. 6, 15–32 (1991).
Berlin S., et al. , Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years. Ann. Bot. 120, 87–100 (2017). PubMed PMC
Lankau R. A., Coevolution between invasive and native plants driven by chemical competition and soil biota. Proc. Natl. Acad. Sci. U.S.A. 109, 11240–11245 (2012). PubMed PMC
Dahlgren J. P., Ehrlén J., Incorporating environmental change over succession in an integral projection model of population dynamics of a forest herb. Oikos 120, 1183–1190 (2011).
Hairston N. G. Jr., Ellner S. P., Geber M. A., Yoshida T., Fox J. A., Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).