Diversification rates, host plant shifts and an updated molecular phylogeny of Andean Eois moths (Lepidoptera: Geometridae)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29281664
PubMed Central
PMC5744940
DOI
10.1371/journal.pone.0188430
PII: PONE-D-17-23522
Knihovny.cz E-zdroje
- MeSH
- DNA genetika MeSH
- druhová specificita MeSH
- fylogeneze * MeSH
- můry klasifikace genetika MeSH
- respirační komplex IV genetika MeSH
- rostliny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Jižní Amerika MeSH
- Názvy látek
- DNA MeSH
- respirační komplex IV MeSH
Eois is one of the best-investigated genera of tropical moths. Its close association with Piper plants has inspired numerous studies on life histories, phylogeny and evolutionary biology. This study provides an updated view on phylogeny, host plant use and temporal patterns of speciation in Eois. Using sequence data (2776 bp) from one mitochondrial (COI) and one nuclear gene (Ef1-alpha) for 221 Eois species, we confirm and reinforce previous findings regarding temporal patterns of diversification. Deep diversification within Andean Eois took place in the Miocene followed by a sustained high rate of diversification until the Pleistocene when a pronounced slowdown of speciation is evident. In South America, Eois diversification is very likely to be primarily driven by the Andean uplift which occurred concurrently with the entire evolutionary history of Eois. A massively expanded dataset enabled an in-depth look into the phylogenetic signal contained in host plant usage. This revealed several independent shifts from Piper to other host plant genera and families. Seven shifts to Peperomia, the sister genus of Piper were detected, indicating that the shift to Peperomia was an easy one compared to the singular shifts to the Chloranthaceae, Siparunaceae and the Piperacean genus Manekia. The potential for close co-evolution of Eois with Piper host plants is therefore bound to be limited to smaller subsets within Neotropical Eois instead of a frequently proposed genus-wide co-evolutionary scenario. In regards to Eois systematics we confirm the monophyly of Neotropical Eois in relation to their Old World counterparts. A tentative biogeographical hypothesis is presented suggesting that Eois originated in tropical Asia and subsequently colonized the Neotropics and Africa. Within Neotropical Eois we were able to identify the existence of six clades not recognized in previous studies and confirm and reinforce the monophyly of all 9 previously delimited infrageneric clades.
Zobrazit více v PubMed
Ehrlich PR, Raven PH. Butterflies and plants: a study in coevolution. Evolution. 1964; 586–608.
Forbes AA, Devine SN, Hippee AC, Tvedte ES, Ward AK, Widmayer HA et al. Revisiting the particular role of host shifts in initiating insect speciation. Evolution. 2017;71: 1126–1137. doi: 10.1111/evo.13164 PubMed DOI
Kergoat GJ, Meseguer AS, Jousselin E. Evolution of Plant–Insect Interactions: Insights From Macroevolutionary Approaches in Plants and Herbivorous Insects. Adv Bot Res. 2017;81: 25–53.
Borer M, van Noort T, Arrigo N, Buerki S, Alvarez N. Does a shift in host plants trigger speciation in the Alpine leaf beetle Oreina speciosissima (Coleoptera, Chrysomelidae)? BMC Evol Biol. 2011;11: 310 doi: 10.1186/1471-2148-11-310 PubMed DOI PMC
Fordyce JA. Host shifts and evolutionary radiations of butterflies. Proc R Soc Lond B. 2010; 277: 3735–3743. PubMed PMC
Schluter D. Ecology and the origin of species. Trends in Ecology & Evolution. 2001;16: 372–380. PubMed
Dumont ER, Dávalos LM, Goldberg A, Santana SE, Rex K, Voigt CC. Morphological innovation, diversification and invasion of a new adaptive zone Proc R Soc Lond B. 2012;279: 1797–1805. DOI: 10.1098/rspb.2011.2005 PubMed PMC
Tishechkin DY. Host plant shifts and transitions into new adaptive zones in leafhoppers: the example of Macropsinae (Homoptera: Auchenorrhyncha: Cicadellidae) of Russia and adjacent countries. Zootaxa. 2016;4121: 117–132. doi: 10.11646/zootaxa.4121.2.2 PubMed DOI
Brehm G, Bodner F, Strutzenberger P, Hünefeld F, Konrad F. Neotropical Eois (Lepidoptera: Geometridae): Checklist, Biogeography, Diversity, and Description Patterns. Annals of the Entomological Society of America. 2011;104: 1091–1107.
Rodríguez-Castañeda G, Dyer LA, Brehm G, Connahs H, Forkner RE, Walla TR. Tropical forests are not flat: How mountains affect herbivore diversity. Ecol Lett. 2010;13: 1348–1357. doi: 10.1111/j.1461-0248.2010.01525.x PubMed DOI
Strutzenberger P, Bodner F, Brehm G, Fiedler K. Molecular phylogeny of Eois: historical signal of wing patterns and host plant use in a group of species rich tropical moths. Zool Scr. 2010;39: 609–620.
Bodner F, Brehm G, Homeier J, Strutzenberger P, Fiedler K. Caterpillars and host plant records for 59 species of Geometridae (Lepidoptera) from a montane rainforest in southern Ecuador. J Insect Sci. 2010;10: 67 doi: 10.1673/031.010.6701 PubMed DOI PMC
Bodner F, Strutzenberger P, Brehm G, Fiedler K. Species richness and host specificity among caterpillar ensembles on shrubs in the Andes of southern Ecuador. Neotrop Entomol. 2012;41: 375–385. doi: 10.1007/s13744-012-0066-4 doi: 10.1007/s13744-012-0066-4 PubMed DOI
Connahs H, Rodriguez-Castaneda G, Walters T, Walla T, Dyer L. Geographic variation in host-specificity and parasitoid pressure of an herbivore (Geometridae) associated with the tropical genus Piper (Piperaceae). J Insect Sci. 2009;9: 28 doi: 10.1673/031.009.2801 PubMed DOI PMC
Seifert CL, Bodner F, Brehm G, Fiedler K. Host plant associations and parasitism of South Ecuadorian Eois species (Lepidoptera: Geometridae) feeding on Peperomia (Piperaceae). J Insect Sci. 2015;15: 119 doi: 10.1093/jisesa/iev098 PubMed DOI PMC
Wilson JS, Forister ML, Dyer LA, O'Connor JM, Burls K, Feldman CR, et al. Host conservatism, host shifts and diversification across three trophic levels in two Neotropical forests. J Evol Biol. 011;25: 532–546. doi: 10.1111/j.1420-9101.2011.02446.x PubMed
Glassmire AE, Jeffrey CS, Forister ML, Parchman TL, Nice CC, Jahner JP, et al. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars. New Phytol. 2016;212: 208–219. http://doi.org/10.1111/nph.14038 doi: 10.1111/nph.14038 PubMed DOI PMC
Tepe EJ, Rodríguez-Castañeda G, Glassmire AE, Dyer LA. Piper kelleyi, a hotspot of ecological interactions and a new species from Ecuador and Peru. PhytoKeys. 2014;34: 19–32.doi: 10.3897/phytokeys.34.6376 PubMed PMC
Brehm G, Strutzenberger P, Fiedler K. Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes. Ecography. 2013;36: 1247–1253. doi: 10.1111/j.1600-0587.2013.00030.x
Brehm G, Hebert PDN, Colwell RK, Adams MO, Bodner F, Friedemann K, et al. Turning up the heat at a hotspot: DNA barcodes reveal 80% more species of geometrid moths along an Andean elevational gradient. PlosOne. 2016;11: e0150327. doi: 10.1371/journal.pone.0150327 PubMed PMC
Strutzenberger P, Brehm G, Fiedler K. DNA barcode sequencing from old type specimens as a tool in taxonomy: a case study in the diverse genus Eois (Lepidoptera: Geometridae). PlosOne. 2012;7: e49710 PubMed PMC
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403: 853–858. doi: 10.1038/35002501 PubMed DOI
Cisneros LM, Burgio KR, Dreiss LM, Klingbeil BT, Patterson BD, Presley SJ et al. Multiple dimensions of bat biodiversity along an extensive tropical elevational gradient. J Anim Ecol. 2014;83: 1124–1136. doi: 10.1111/1365-2656.12201 PubMed DOI
Presley SJ, Cisneros LM, Patterson BD Willig MR. Vertebrate metacommunity structure along an extensive elevational gradient in the tropics: a comparison of bats, rodents and birds. Glob Ecol Biogeogr. 2012;21: 968–976.
Mullen SP, Savage WK, Wahlberg N, Willmott KR. Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies. Proc R Soc Lond B. 2011;278: 1777–1785. PubMed PMC
Ignatov II, Janovec JP, Centeno P, Tobler MW, Grados J, Lamas G, et al. Patterns of richness, composition, and distribution of sphingid moths along an alevational gradient in the Andes-Amazon region of southeastern Peru. Ann Ent Soc Am. 2011;104: 68–76.
Palin OF, Eggleton P, Malhi Y, Girardin CAJ, Rozas-Dávila A, Parr CL. Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica. 2011;43: 100–107.
Strutzenberger P, Fiedler K. Temporal patterns of diversification in Andean Eois, a species-rich clade of moths (Lepidoptera, Geometridae). J Evol Biol. 2011;24: 919–925. doi: 10.1111/j.1420-9101.2010.02216.x doi: 10.1111/j.1420-9101.2010.02216.x PubMed DOI
Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden B, Eiler J et al. Rise of the Andes. Science. 2008;320: 1304–1307. doi: 10.1126/science.1148615 PubMed DOI
Gregory-Wodzicki KM. Uplift history of the central and northern Andes: a review. Geol Soc Am Bull. 2000;112: 1091–1105.
Hoorn C, Wesselingh F, ter Steege H, Bermudez M, Mora A, Sevink J et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science. 2010;330, 927–931. doi: 10.1126/science.1194585 PubMed DOI
Matos-Maraví PF, Peña C, Willmott KR, Freitas AVL, Wahlberg N. Systematics and evolutionary history of butterflies in the “Taygetis clade” (Nymphalidae: Satyrinae: Euptychiina): Towards a better understanding of Neotropical biogeography. Mol Phylogenet Evol. 2013;66: 54–68. doi: 10.1016/j.ympev.2012.09.005 PubMed DOI
De-Silva DL, Elias M, Willmott K, Mallet J, Day JJ. Diversification of clearwing butterflies with the rise of the Andes. J Biogeogr. 2016;43: 44–58. doi: 10.1111/jbi.12611. doi: 10.1111/jbi.12611 PubMed DOI PMC
Long EC, Thomson RC, Shapiro AM. A time-calibrated phylogeny of the butterfly tribe Melitaeini, Mol Phylogenetic Evol. 2014;79: 69–81. PubMed
Matos-Maraví P. Investigating the timing of origin and evolutionary processes shaping regional species diversity: Insights from simulated data and Neotropical butterfly diversification rates. Evolution. 2016;70: 1638–1650. doi:10.1111/evo.12960 doi: 10.1111/evo.12960 PubMed DOI
Stebbins GL. Flowering Plants: Evolution Above the Species Level, Arnold XVIII, London; 1974.
Stephens PR, Wiens JJ. Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. Am Nat. 2003;161: 112–128. doi: 10.1086/345091 PubMed DOI
Chazot N, Willmott KR, Condamine FL, De-Silva DL, Freitas AVL, Lamas G et al. Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Mol Ecol. 2016;25: 5765–5784. doi:10.1111/mec.13773 doi: 10.1111/mec.13773 PubMed DOI
Haffer J. Speciation in Amazonian forest birds. Science. 1969;165: 131–137. doi: 10.1126/science.165.3889.131 PubMed DOI
Massad TJ, Martins de Moraes M, Philbin C, Oliveira C, Cebrian-Torrejon G, Fumiko et al. (2017). Similarity in volatile communities leads to increased herbivory and greater tropical forest diversity. Ecology, Accepted Manuscript. 2017. doi:10.1002/ecy.1875 PubMed
Dyer LA, Richards J, Dodson CD. Isolation, synthesis, and evolutionary ecology of Piper amides In: Dyer LA, Palmer AND, editors. Piper: A model genus for studies of phytochemistry, ecology, and evolution. Kluwer Academic/Plenum Publishers, New York; 2004.
Blies D. Caterpillar assemblages on Hedyosmum shrubs along an elevational gradient in a tropical mountain forest in south Ecuador. Diploma Thesis, University of Trier, Germany. 2014: pp 1–59.
Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 2013;8: e66213. doi: 10.1371/journal.pone.0066213. PubMed PMC
Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. Comprehensive Molecular Sampling Yields a Robust Phylogeny for Geometrid Moths (Lepidoptera: Geometridae). PLoS ONE. 2011;6: e20356 doi: 10.1371/journal.pone.0020356 PubMed DOI PMC
Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol. 2013;30: 772–780. doi: 10.1093/molbev/mst010 doi: 10.1093/molbev/mst010 PubMed DOI PMC
Popescu AA, Huber KT, Paradis E. ape 3.0: new tools for distance based phylogenetics and evolutionary analysis in R. Bioinformatics. 2012;28: 1536–1537. doi: 10.1093/bioinformatics/bts184 PubMed DOI
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29: 1695–1701. doi: 10.1093/molbev/mss020 PubMed DOI
Suchard MA, Rambaut A. Many-core algorithms for statistical phylogenetics. Bioinformatics. 2009;25: 1370–1376. doi: 10.1093/bioinformatics/btp244 PubMed DOI PMC
Yamamoto S, Sota T. Phylogeny of the Geometridae and the evolution of winter moths inferred from simultaneous analysis of mitochondrial and nuclear genes. Mol Phylogenet Evol. 2007;44: 711–723. doi: 10.1016/j.ympev.2006.12.027 PubMed DOI
Jarzembowski EA. Fossil insects from the Bembridge Marls, Palaeogene of the Isle of Wight, southern England. Bull Brit Mus (Nat Hist) (Geology). 1980;33: 237–293.
Drummond AJ, Bouckaert RR. Bayesian Evolutionary Analysis with BEAST. Cambridge University Press; 2015.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Rabosky DL. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol Lett. 2009;12: 735–743. doi: 10.1111/j.1461-0248.2009.01333.x PubMed DOI
Colwell RK. EstimateS: Statistical estimation of richness and shared species from samples. Version 9. 2013. Available from: http://purl.oclc.org/estimates
Bodner F. Caterpillar communities on shrubs in the montane forest zone of southern Ecuador. PhD thesis. University of Vienna; 2011. Available from: http://othes.univie.ac.at/15967/
Hausmann A, Viidalepp J. The geometrid moths of Europe, vol. 3: subfamily Larentiinae I. Apollo Books, Vester Skerning; 2012.
Matzke NJ. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front Biogeogr. 2013;5: 242–248.
Õunap E, Viidalepp J, Saarma U. Systematic position of Lythriini revised: transferred from Larentiinae to Sterrhinae (Lepidoptera, Geometridae). Zool Scr. 2008;37: 405–413.
Holloway JD. The moths of Borneo: family Geometridae, subfamilies Sterrhinae and Larentiinae. Malayan Nature Journal. 1997;51: 1–242.
Õunap E, (2016) Phylogeny of the subfamily Larentiinae (Lepidoptera: Geometridae): integrating molecular data and traditional classifications. Syst Entomol. 2016;41: 824–843.
Viidalepp J. A morphological review of tribes in Larentiinae (Lepidoptera, Geometridae). Zootaxa. 2011;3136: 1–44.
Xue D, Scoble MJ. A review of the genera associated with the tribe Asthenini (Lepidoptera: Geometridae: Larentiinae). Bull Br Mus Nat Hist Entomol. 2002;71: 77–133.
Mannion PD, Upchurch P, Benson RB, Goswami A. The latitudinal biodiversity gradient through deep time. Trends Ecol Evol. 2014;29: 42–50. doi: 10.1016/j.tree.2013.09.012 PubMed DOI
Moreau CS, Bell CD. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution. 2013;67: 2240–2257. doi:10.1111/evo.12105 doi: 10.1111/evo.12105 PubMed DOI
Brehm G, Fiedler K. Diversity and community structure of geometrid moths of disturbed habitat in a montane area in the Ecuadorian Andes. J Res Lepid. 2005;38: 1–14.
Groot MHM, Hooghiemstra H, Berrio JC, Giraldo C. North Andean environmental and climatic change at orbital to submillennial time-scales: Vegetation, water levels and sedimentary regimes from Lake Fúquene 130–27 ka. Rev Palaeobot Palynol. 2015;197: 186–204.
Hoorn C, Wesselingh FP, Hovikoski J, Guerrero J. The Development of the Amazonian Mega‐Wetland (Miocene; Brazil, Colombia, Peru, Bolivia) In: Hoorn C, Wesselingh FP, editors. Amazonia: Landscape and Species Evolution: A look into the past Wiley‐Blackwell Publishing Ltd; 2011. pp. 123–142.
Hovikoski J, Wesselingh FP, Räsänen M, Gingras M, Vonhof HB. Marine influence in Amazonia: evidence from the geological record In: Hoorn C, Wesselingh FP, editors. Amazonia: Landscape and Species Evolution: A look into the past Wiley‐Blackwell Publishing Ltd; 2011. pp. 143–161.
Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC. Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol. 2009;7: e1000056. doi: 10.1371/journal.pbio.1000056 PubMed PMC
Antonelli A, Quijada-Mascareñas A, Crawford AJ, Bates JM, Velazco PM, Wüster W. Molecular studies and phylogeography of Amazonian tetrapods and their relation to geological and climatic models In: Hoorn C, Wesselingh FP, editors. Amazonia: Landscape and Species Evolution: A look into the past Wiley‐Blackwell Publishing Ltd; 2011. pp. 387–404.
De-Silva DL, Mota LL, Chazot N, Mallarino R, Silva-Brandão KL, Piñerez LMG et al. North Andean origin and diversification of the largest ithomiine butterfly genus. Sci Rep. 2017;7: 45966 http://doi.org/10.1038/srep45966 doi: 10.1038/srep45966 PubMed DOI PMC
Diniz-Filho J, Rangel T, Bini L, Hawkins B. Macroevolutionary dynamics in environmental space and the latitudinal diversity gradient in New World birds. Proc R Soc Lond B. 2007;274: 43–52. PubMed PMC
McKenna D, Farrell B. 2006. Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. Proc Natl Acad Sci USA. 2006;103: 10947–10951. doi: 10.1073/pnas.0602712103 PubMed DOI PMC
Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ. Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. Am Nat. 2005;165: E36–E65. doi: 10.1086/428296 PubMed DOI
Schmidt O. Larval food plants of Australian Larentiinae (Lepidoptera: Geometridae)–a review of available data. Biodiversity Data Journal. 2016;4: e7938. doi: 10.3897/BDJ.4.e7938. PubMed PMC
Choi SW. Insect Fauna of Korea 16 (7). Arthropoda: Insecta: Lepidoptera: Geometridae (Geometrids). National Institute of Biological Resources, Incheon (Korea); 2012.
Novotny V, Miller SE, Cizek L, Leps J, Janda M, Basset Y, et al. Colonising aliens: caterpillars (Lepidoptera) feeding on Piper aduncum and P. umbellatum in rainforests of Papua New Guinea. Ecol Entomol. 2003;28: 704–716.
Thompson JN. The geographic mosaic of coevolution. University of Chicago Press; 2005.
Hembry DH, Yoder JB, Goodman KR. Coevolution and the Diversification of Life. Am Nat. 2014;184: 425–438. doi: 10.1086/677928 PubMed DOI
Bergamini LL, Lewinsohn TM, Jorge LR, Almeida-Neto M. Manifold influences of phylogenetic structure on a plant–herbivore network. Oikos. 2017;126: 703–712. doi:10.1111/oik.03567
Volf M, Pyszko P, Abe T, Libra M, Kotásková N, Šigut M et al. Phylogenetic composition of host plant communities drives plant-herbivore food web structure. J Anim Ecol. 2017;86: 556–565. doi:10.1111/1365-2656.12646 doi: 10.1111/1365-2656.12646 PubMed DOI
Antonelli A, Sanmartin I. Mass extinction, gradual cooling, or rapid radiation? Reconstructing the spatiotemporal evolution of the ancient angiosperm genus Hedyosmum (Chloranthaceae) using empirical and simulated approaches. Syst Biol. 2011;60: 596–615. doi: 10.1093/sysbio/syr062 PubMed DOI
Winkler IS, Mitter C. The phylogenetic dimension of insect/plant interactions: a summary of recent evidence In: Tillmon KJ, editor. Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. Berkeley, CA: University of California Press; 2008. pp. 240–263.
Futuyma DJ, Agrawal AA. Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci U S A. 2009;106: 18054–18061. doi: 10.1073/pnas.0904106106 PubMed DOI PMC
Fine PVA, Metz MR, Lokvam J, Mesones I, Zuñiga JMA, Lamarre GPA, et al. Insect herbivores, chemical innovation, and the evolution of habitat specialization in Amazonian trees. Ecology. 2013;94: 1764–1775. doi:10.1890/12-1920.1 PubMed
Frenzke L, Scheiris E, Pino G, Symmank L, Goetghebeur P, Neinhuis C, et al. A revised infrageneric classification of the genus Peperomia (Piperaceae). Taxon. 2015;64: 424–444.