Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer's disease

. 2018 Nov ; 36 (15) : 3938-3957. [epub] 20171227

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29281938

Grantová podpora
Z01 BC005562 Intramural NIH HHS - United States

Alzheimer's disease (AD) is one of the most significant neurodegenerative disorders and its symptoms mostly appear in aged people. Catechol-o-methyltransferase (COMT) is one of the known target enzymes responsible for AD. With the use of 23 known inhibitors of COMT, a query has been generated and validated by screening against the database of 1500 decoys to obtain the GH score and enrichment value. The crucial features of the known inhibitors were evaluated by the online ZINC Pharmer to identify new leads from a ZINC database. Five hundred hits were retrieved from ZINC Pharmer and by ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering by using FAF-Drug-3 and 36 molecules were considered for molecular docking. From the COMT inhibitors, opicapone, fenoldopam, and quercetin were selected, while ZINC63625100_413 ZINC39411941_412, ZINC63234426_254, ZINC63637968_451, and ZINC64019452_303 were chosen for the molecular dynamics simulation analysis having high binding affinity and structural recognition. This study identified the potential COMT inhibitors through pharmacophore-based inhibitor screening leading to a more complete understanding of molecular-level interactions.

Zobrazit více v PubMed

Böckmann RA, & Grubmüller H (2002). Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase. Nature Structural and Molecular Biology, 9, 198–202. doi:10.1038/nsb760 PubMed DOI

Bondonno NP, Bondonno CP, Rich L, Mas E, Shinde S, Ward NC, … Croft KD (2016). Acute effects of quercetin-3-O-glucoside on endothelial function and blood pressure: A randomized dose-response study. The American Journal of Clinical Nutrition, 104, 97–103. doi:10.3945/ajcn.116.131268 PubMed DOI

Borad MA, Bhoi MN, Rathwa SK, Vasava MS, Patel HD, Patel CN, … Georrge JJ (2016). Microwave-assisted ZrSiO2 catalysed synthesis, characterization and computational study of novel spiro [Indole-Thiazolidines] derivatives as anti-tubercular agents. Interdisciplinary Sciences: Computational Life Sciences, 1–8. doi:10.1007/s12539-016-0195-2 PubMed DOI

Chen Z, Li H-L, Zhang Q-J, Bao X-G, Yu K-Q, Luo X-M, … Jiang H-L (2009). Pharmacophore-based virtual screening versus docking-based virtual screening: A benchmark comparison against eight targets. Acta Pharmacologica Sinica, 30, 1694–1708. doi:10.1038/aps.2009.159 PubMed DOI PMC

Das P, Kang S-G, Temple S, & Belfort G (2014). Interaction of amyloid inhibitor proteins with amyloid beta peptides: Insight from molecular dynamics simulations. PLoS ONE, 9, e113041. doi:10.1371/journal.pone.0113041 PubMed DOI PMC

Goncalves D, Alves G, Soares-da-Silva P, & Falcão A (2012). Bioanalytical chromatographic methods for the determination of catechol-O-methyltransferase inhibitors in rodents and human samples: A review. Analytica Chimica Acta, 710, 17–32. doi:10.1016/j.aca.2011.10.026 PubMed DOI

Guldberg HC, & Marsden CA (1975). Catechol-O-methyl transferase: Pharmacological aspects and physiological role. Pharmacological Reviews, 27, 135–206. PubMed

Guner O (2002). History and evolution of the pharmacophore concept in computer-aided drug design. Current Topics in Medicinal Chemistry, 2, 1321–1332. doi:10.2174/1568026023392940 PubMed DOI

Haasio K (2010). Toxicology and safety of COMT inhibitors. International Review of Neurobiology, 95, 163–189. doi:10.1016/B978-0-12-381326-8.00007-7 PubMed DOI

Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, & Coleman RG (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52, 1757–1768. doi:10.1021/ci3001277 PubMed DOI PMC

Jatana N, Sharma A, & Latha N (2013). Pharmacophore modeling and virtual screening studies to design potential COMT inhibitors as new leads. Journal of Molecular Graphics and Modelling, 39, 145–164. doi:10.1016/j.jmgm.2012.10.010 PubMed DOI

Karplus M, & McCammon JA (2002). Molecular dynamics simulations of biomolecules. Nature Structural and Molecular Biology, 9, 646–652. doi:10.1038/nsb0902-646 PubMed DOI

Keasar C, & Levitt M (2003). A novel approach to decoy set generation: Designing a physical energy function having local minima with native structure characteristics. Journal of Molecular Biology, 329, 159–174. doi:10.1016/S00222836(03)00323-1 PubMed DOI PMC

Khedkar SA, Malde AK, Coutinho EC, & Srivastava S (2007). Pharmacophore modeling in drug discovery and development: An overview. Medicinal Chemistry, 3, 187–197. doi:10.2174/157340607780059521 PubMed DOI

Kiss L. s. E., & Soares-da-Silva P (2014). Medicinal chemistry of catechol O-methyltransferase (COMT) inhibitors and their therapeutic utility. Journal of Medicinal Chemistry, 57, 8692–8717. doi:10.1021/jm500572b PubMed DOI

Krieger E, Darden T, Nabuurs SB, Finkelstein A, & Vriend G (2004). Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins: Structure, Function, and Bioinformatics, 57, 678–683. doi:10.1002/prot.20251 PubMed DOI

Krieger E, & Vriend G (2015). New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36, 996–1007. doi:10.1002/jcc.23899 PubMed DOI PMC

Kumar R, Son M, Bavi R, Lee Y, Park C, Arulalapperumal V, … Kim Y-S (2015). Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling. Acta Pharmacologica Sinica, 36, 998–1012. doi:10.1038/aps.2015.17 PubMed DOI PMC

Kurogi K, Alazizi A, Liu M-Y, Sakakibara Y, Suiko M, Sugahara T, & Liu M-C (2012). Concerted actions of the catechol O-methyltransferase and the cytosolic sulfotransferase SULT1A3 in the metabolism of catecholic drugs. Biochemical Pharmacology, 84, 1186–1195. doi:10.1016/j.bcp.2012.08.009 PubMed DOI PMC

Lagorce D, Sperandio O, Galons H, Miteva MA, & Villoutreix BO (2008). FAF-drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics, 9, 396. doi:10.1186/14712105-9-396 PubMed DOI PMC

Lemkul JA, & Bevan DR (2013). Aggregation of Alzheimer’s amyloid β-peptide in biological membranes: A molecular dynamics study. Biochemistry, 52, 4971–4980. PubMed

Lipinski CA (2004). Lead-and drug-like molecules: The rule-of-five revolution. Drug Discovery Today: Technologies, 1, 337–341. doi:10.1021/bi400562x PubMed DOI

Lipinski CA (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews, 101, 34–41. doi:10.1016/j.addr.2016.04.029 PubMed DOI

Liu F-F, Ji L, Dong X-Y, & Sun Y (2009). Molecular insight into the inhibition effect of trehalose on the nucleation and elongation of amyloid β-peptide oligomers. The Journal of Physical Chemistry B, 113, 11320–11329. doi:10.1021/jp905580j PubMed DOI

Lu T-M, Chiu H-F, Shen Y-C, Chung C-C, Venkatakrishnan K, & Wang C-K (2015). Hypocholesterolemic efficacy of quercetin rich onion juice in healthy mild hypercholesterolemic adults: A pilot study. Plant Foods for Human Nutrition, 70, 395–400. doi:10.1007/s11130-0150507-4 PubMed DOI

Mabbitt PD, Correy GJ, Meirelles T, Fraser NJ, Coote ML, & Jackson CJ (2016). Conformational disorganization within the active site of a recently evolved organophosphate hydrolase limits its catalytic efficiency. Biochemistry, 55, 1408–1417. doi:10.1021/acs.biochem.5b01322 PubMed DOI

Modi K, Panchal U, Dey S, Patel C, Kongor A, Pandya HA, & Jain V (2016). Thiacalix [4] arene-tetra-(quinoline-8-sulfonate): A Sensitive and selective fluorescent sensor for Co (II). Journal of Fluorescence, 26, 1729–1736. doi:10.1007/s10895-016-1864-6 PubMed DOI

Muller M, Tang M-X, Schupf N, Manly JJ, Mayeux R, & Luchsinger JA (2007). Metabolic syndrome and dementia risk in a multiethnic elderly cohort. Dementia and Geriatric Cognitive Disorders, 24, 185–192. doi:10.1159/000105927 PubMed DOI PMC

Murphy MP, & LeVine H III (2010). Alzheimer’s disease and the amyloid-β peptide. Journal of Alzheimer’s Disease, 19, 311–323. doi:10.3233/JAD-2010-1221 PubMed DOI PMC

Nitta R, Okada Y, & Hirokawa N (2008). Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin. Nature Structural & Molecular Biology, 15, 1067–1075. doi:10.1038/nsmb.1487 PubMed DOI

Parmar R, Highland H, Desai K, Patel C, & George L-B (2015). Pesticide target protein and phytochemical interactions: A computational study mitigating mosquito-vectors.

Parmar F, Patel C, Highland H, Pandya H, & George L-B (2016). Antiproliferative efficacy of kaempferol on cultured daudi cells: An in silico and in vitro study. Advances in Biology, 2016. doi:10.1155/2016/9521756 DOI

Ritchie TJ, Ertl P, & Lewis R (2011). The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discovery Today, 16, 65–72. doi:10.1016/j.drudis.2010.11.002 PubMed DOI

Rocha JF, Almeida L, Falcão A, Palma PN, Loureiro AI, Pinto R, … Soares-da-Silva P (2013). Opicapone: A short lived and very long acting novel catechol-O-methyltransferase inhibitor following multiple dose administration in healthy subjects. British Journal of Clinical Pharmacology, 76, 763–775. doi:10.1111/bcp.12081 PubMed DOI PMC

Serrano-Pozo A, Frosch MP, Masliah E, & Hyman BT (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor perspectives in medicine, 1, a006189. doi:10.1101/cshperspect.a006189 PubMed DOI PMC

Serretti A, & Olgiati P (2012). Catechol-O-methyltransferase and Alzheimer’s disease: A review of biological and genetic findings. CNS and Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS and Neurological Disorders), 11, 299–305. doi:10.2174/187152712800672472 PubMed DOI

Sliwoski G, Kothiwale S, Meiler J, & Lowe EW (2014). Computational methods in drug discovery. Pharmacological Reviews, 66, 334–395. doi:10.1124/pr.112.007336 PubMed DOI PMC

Tsao D, Diatchenko L, & Dokholyan NV (2011). Structural mechanism of S-adenosyl methionine binding to catechol O-methyltransferase. PLoS ONE, 6, e24287. doi:10.1371/journal.pone.0024287 PubMed DOI PMC

Waldner BJ, Fuchs JE, Schauperl M, Kramer C, & Liedl KR (2016). Protease inhibitors in view of peptide substrate databases. Journal of Chemical Information and Modeling, 56, 1228–1235. doi:10.1021/acs.jcim.6b00064 PubMed DOI PMC

Wang H-W, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K, … Nogales E (2009). Structural insights into RNA processing by the human RISC-loading complex. Nature Structural & Molecular Biology, 16, 1148–1153. doi:10.1038/nsmb.1673 PubMed DOI PMC

Wolber G, Dornhofer AA, & Langer T (2006). Efficient overlay of small organic molecules using 3D pharmacophores. Journal of Computer-Aided Molecular Design, 20, 773–788. doi:10.1007/s10822-006-9078-7 PubMed DOI

Wolber G, & Langer T (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45, 160–169. doi:10.1021/ci049885e PubMed DOI

Wu L, Rosa-Neto P, Hsiung G-YR, Sadovnick AD, Masellis M, Black SE, … Gauthier S (2012). Early-onset familial Alzheimer’s disease (EOFAD). The Canadian Journal of Neurological Sciences, 39, 436–445. doi:10.1017/S0317167100013949 PubMed DOI

Xia J, Tilahun EL, Reid T-E, Zhang L, & Wang XS (2015). Benchmarking methods and data sets for ligand enrichment assessment in virtual screening. Methods, 71, 146–157. doi:10.1016/j.ymeth.2014.11.015 PubMed DOI PMC

Zhou J, & Wishart DS (2013). An improved method to detect correct protein folds using partial clustering. BMC Bioinformatics, 14, 11. doi:10.1186/1471-2105-14-11 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...