Multiple functions of CREB-binding protein during postembryonic development: identification of target genes
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
R01 GM070559
NIGMS NIH HHS - United States
GM070559-11
NIGMS NIH HHS - United States
2351177000
Cooperative State Research, Education, and Extension Service - International
PubMed
29284404
PubMed Central
PMC5747157
DOI
10.1186/s12864-017-4373-3
PII: 10.1186/s12864-017-4373-3
Knihovny.cz E-resources
- Keywords
- CBP, Ecdysone, Juvenile hormone, Kr-h1, RNA seq, RNAi, Tribolium,
- MeSH
- Gene Expression MeSH
- Insect Proteins antagonists & inhibitors genetics metabolism physiology MeSH
- Juvenile Hormones pharmacology MeSH
- Larva genetics metabolism MeSH
- CREB-Binding Protein antagonists & inhibitors genetics metabolism physiology MeSH
- RNA Interference MeSH
- Tribolium genetics growth & development metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Insect Proteins MeSH
- Juvenile Hormones MeSH
- CREB-Binding Protein MeSH
BACKGROUND: Juvenile hormones (JH) and ecdysteroids control postembryonic development in insects. They serve as valuable targets for pest management. Hence, understanding the molecular mechanisms of their action is of crucial importance. CREB-binding protein (CBP) is a universal transcriptional co-regulator. It controls the expression of several genes including those from hormone signaling pathways through co-activation of many transcription factors. However, the role of CBP during postembryonic development in insects is not well understood. Therefore, we have studied the role of CBP in postembryonic development in Tribolium, a model coleopteran insect. RESULTS: CBP is ubiquitously expressed in the red flour beetle, Tribolium castaneum. RNA interference (RNAi) mediated knockdown of CBP resulted in a decrease in JH induction of Kr-h1 gene expression in Tribolium larvae and led to a block in their development. Moreover, the injection of CBP double-stranded RNA (dsRNA) showed lethal phenotypes within 8 days of injection. RNA-seq and subsequent differential gene expression analysis identified CBP target genes in Tribolium. Knockdown of CBP caused a decrease in the expression of 1306 genes coding for transcription factors and other proteins associated with growth and development. Depletion of CBP impaired the expression of several JH response genes (e.g., Kr-h1, Hairy, early trypsin) and ecdysone response genes (EcR, E74, E75, and broad complex). Further, GO enrichment analyses of the downregulated genes showed enrichment in different functions including developmental processes, pigmentation, anatomical structure development, regulation of biological and cellular processes, etc. CONCLUSION: These data suggest diverse but crucial roles for CBP during postembryonic development in the coleopteran model insect, Tribolium. It can serve as a target for RNAi mediated pest management of this stored product pest.
See more in PubMed
Nijhout HF, Callier V. Developmental mechanisms of body size and wing-body scaling in insects. Annu Rev Entomol. 2015;60:141–156. doi: 10.1146/annurev-ento-010814-020841. PubMed DOI
Hall BL, Thummel CS. The RXR homolog ultraspiracle is an essential component of the Drosophila ecdysone receptor. Development. 1998;125(23):4709–4717. PubMed
Huet F, Ruiz C, Richards G. Puffs and PCR: the in vivo dynamics of early gene expression during ecdysone responses in Drosophila. Development. 1993;118(2):613–627. PubMed
Yao T-P, Forman BM, Jiang Z, Cherbas L, Chen J-D, McKeown M, Cherbas P, Evans RM. Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature. 1993;366(6454):476–479. doi: 10.1038/366476a0. PubMed DOI
Jindra M, Palli SR, Riddiford LM. The juvenile hormone signaling pathway in insect development. Annu Rev Entomol. 2013;58:181–204. doi: 10.1146/annurev-ento-120811-153700. PubMed DOI
Jindra M, Belles X, Shinoda T. Molecular basis of juvenile hormone signaling. Curr Opin Insect Sci. 2015;11:39–46. doi: 10.1016/j.cois.2015.08.004. PubMed DOI
Mirth CK, Tang HY, Makohon-Moore SC, Salhadar S, Gokhale RH, Warner RD, Koyama T, Riddiford LM, Shingleton AW. Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc Natl Acad Sci U S A. 2014;111(19):7018–7023. doi: 10.1073/pnas.1313058111. PubMed DOI PMC
Sheng Z, Xu J, Bai H, Zhu F, Palli SR. Juvenile hormone regulates vitellogenin gene expression through insulin-like peptide signaling pathway in the red flour beetle, Tribolium castaneum. J Biol Chem. 2011;286(49):41924–41936. doi: 10.1074/jbc.M111.269845. PubMed DOI PMC
Abdou M, Peng C, Huang J, Zyaan O, Wang S, Li S, Wang J. Wnt signaling cross-talks with JH signaling by suppressing met and gce expression. PLoS One. 2011;6(11):e26772. doi: 10.1371/journal.pone.0026772. PubMed DOI PMC
Zhang Z, Xu J, Sheng Z, Sui Y, Palli SR. Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J Biol Chem. 2011;286(10):8437–8447. doi: 10.1074/jbc.M110.191684. PubMed DOI PMC
Charles JP, Iwema T, Epa VC, Takaki K, Rynes J, Jindra M. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc Natl Acad Sci U S A. 2011;108(52):21128–21133. doi: 10.1073/pnas.1116123109. PubMed DOI PMC
Li M, Mead EA, Zhu J. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc Natl Acad Sci U S A. 2011;108(2):638–643. doi: 10.1073/pnas.1013914108. PubMed DOI PMC
Jindra M, Uhlirova M, Charles JP, Smykal V, Hill RJ. Genetic evidence for function of the bHLH-PAS protein Gce/met as a juvenile hormone receptor. PLoS Genet. 2015;11(7):e1005394. doi: 10.1371/journal.pgen.1005394. PubMed DOI PMC
Lozano J, Kayukawa T, Shinoda T, Belles XA. Role for Taiman in Insect Metamorphosis. PLoS Genet. 2014;10(10):e1004769. doi: 10.1371/journal.pgen.1004769. PubMed DOI PMC
Belles X, Santos CG. The MEKRE93 (Methoprene tolerant-Kruppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. Insect Biochem Mol Biol. 2014;52:60–68. doi: 10.1016/j.ibmb.2014.06.009. PubMed DOI
Minakuchi C, Zhou X, Riddiford LM. Kruppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mech Dev. 2008;125(1–2):91–105. doi: 10.1016/j.mod.2007.10.002. PubMed DOI PMC
Shin SW, Zou Z, Saha TT, Raikhel AS. bHLH-PAS heterodimer of methoprene-tolerant and cycle mediates circadian expression of juvenile hormone-induced mosquito genes. Proc Natl Acad Sci U S A. 2012;109(41):16576–16581. doi: 10.1073/pnas.1214209109. PubMed DOI PMC
Kayukawa T, Minakuchi C, Namiki T, Togawa T, Yoshiyama M, Kamimura M, Mita K, Imanishi S, Kiuchi M, Ishikawa Y, et al. Transcriptional regulation of juvenile hormone-mediated induction of Kruppel homolog 1, a repressor of insect metamorphosis. Proc Natl Acad Sci U S A. 2012;109(29):11729–11734. doi: 10.1073/pnas.1204951109. PubMed DOI PMC
Minakuchi C, Namiki T, Shinoda T. Kruppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev Biol. 2009;325(2):341–350. doi: 10.1016/j.ydbio.2008.10.016. PubMed DOI
Lozano J, Belles X. Conserved repressive function of Kruppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Sci Rep. 2011;1:163. doi: 10.1038/srep00163. PubMed DOI PMC
Zou Z, Saha TT, Roy S, Shin SW, Backman TWH, Girke T, White KP, Raikhel AS. Juvenile hormone and its receptor, methoprene-tolerant, control the dynamics of mosquito gene expression. Proc Natl Acad Sci U S A. 2013;110(24):E2173–E2181. doi: 10.1073/pnas.1305293110. PubMed DOI PMC
Benevolenskaya EV, Frolov MV, Birchler JA. Kruppel homolog (Kr h) is a dosage-dependent modifier of gene expression in Drosophila. Genet Res. 2000;75(2):137–142. doi: 10.1017/S0016672399004437. PubMed DOI
Pecasse F, Beck Y, Ruiz C, Richards G. Kruppel-homolog, a stage-specific modulator of the prepupal ecdysone response, is essential for Drosophila metamorphosis. Dev Biol. 2000;221(1):53–67. doi: 10.1006/dbio.2000.9687. PubMed DOI
Cui Y, Sui Y, Xu J, Zhu F, Palli SR. Juvenile hormone regulates Aedes aegypti Kruppel homolog 1 through a conserved E box motif. Insect Biochem Mol Biol. 2014;52:23–32. doi: 10.1016/j.ibmb.2014.05.009. PubMed DOI PMC
Kayukawa T, Tateishi K, Shinoda T. Establishment of a versatile cell line for juvenile hormone signaling analysis in Tribolium castaneum. Sci Rep. 2013;3:1570. PubMed PMC
Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation. J Biol Chem. 2001;276(17):13505–13508. doi: 10.1074/jbc.R000025200. PubMed DOI
McManus KJ, Hendzel MJ. CBP, a transcriptional coactivator and acetyltransferase. Biochem Cell Biol. 2001;79(3):253–266. doi: 10.1139/o01-076. PubMed DOI
Janknecht R, Wells NJ, Hunter T. TGF-β-stimulated cooperation of Smad proteins with the coactivators CBP/p300. Genes Dev. 1998;12(14):2114–2119. doi: 10.1101/gad.12.14.2114. PubMed DOI PMC
Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000;14(13):1553–1577. PubMed
Akimaru H, Chen Y, Dai P, Hou D-X, Nonaka M, Smolik SM, Armstrong S, Goodman RH, Ishii S. Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling. Nature. 1997;386(6626):735. doi: 10.1038/386735a0. PubMed DOI
Heldin C-H, Moustakas A. Role of Smads in TGFβ signaling. Cell Tissue Res. 2012;347(1):21–36. doi: 10.1007/s00441-011-1190-x. PubMed DOI
Kirilly D, Wong JJ, Lim EK, Wang Y, Zhang H, Wang C, Liao Q, Wang H, Liou YC, Yu F. Intrinsic epigenetic factors cooperate with the steroid hormone ecdysone to govern dendrite pruning in drosophila. Neuron. 2011;72(1):86–100. doi: 10.1016/j.neuron.2011.08.003. PubMed DOI
Bodai L, Zsindely N, Gaspar R, Kristo I, Komonyi O, Boros IM. Ecdysone induced gene expression is associated with acetylation of histone H3 lysine 23 in Drosophila melanogaster. PLoS One. 2012;7(7):e40565. doi: 10.1371/journal.pone.0040565. PubMed DOI PMC
Weinert BT, Wagner SA, Horn H, Henriksen P, Liu WR, Olsen JV, Jensen LJ, Choudhary C. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal. 2011;4(183):ra48. doi: 10.1126/scisignal.2001902. PubMed DOI
Fernandez-Nicolas A, Belles X. CREB-binding protein contributes to the regulation of endocrine and developmental pathways in insect hemimetabolan pre-metamorphosis. Biochim Biophys Acta. 2016;1860(3):508–515. doi: 10.1016/j.bbagen.2015.12.008. PubMed DOI
Parthasarathy R, Sun Z, Bai H, Palli SR. Juvenile hormone regulation of vitellogenin synthesis in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol. 2010;40(5):405–414. doi: 10.1016/j.ibmb.2010.03.006. PubMed DOI PMC
Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993;365(6449):855–859. doi: 10.1038/365855a0. PubMed DOI
Akimaru H, Hou D-X, Ishii S. Drosophila CBP is required for dorsal-dependent twist. Nat Genet. 1997;17:211. doi: 10.1038/ng1097-211. PubMed DOI
Waltzer L, Bienz M. A function of CBP as a transcriptional co-activator during Dpp signalling. EMBO J. 1999;18(6):1630–1641. doi: 10.1093/emboj/18.6.1630. PubMed DOI PMC
Holmqvist P-H, Boija A, Philip P, Crona F, Stenberg P, Mannervik M. Preferential genome targeting of the CBP co-activator by Rel and Smad proteins in early Drosophila melanogaster embryos. PLoS Genet. 2012;8(6):e1002769. doi: 10.1371/journal.pgen.1002769. PubMed DOI PMC
Peterson AJ, O’Connor MB. Strategies for exploring TGF-β signaling in Drosophila. Methods. 2014;68(1):183–193. doi: 10.1016/j.ymeth.2014.03.016. PubMed DOI PMC
Tropberger P, Pott S, Keller C, Kamieniarz-Gdula K, Caron M, Richter F, Li G, Mittler G, Liu ET, Buhler M, et al. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell. 2013;152(4):859–872. doi: 10.1016/j.cell.2013.01.032. PubMed DOI
Zeng J, Yi SV. DNA methylation and genome evolution in honeybee: gene length, expression, functional enrichment covary with the evolutionary signature of DNA methylation. Genome Biol Evol. 2010;2:770–780. doi: 10.1093/gbe/evq060. PubMed DOI PMC
Zheng WW, Dong XM, Yin RH, Xu FF, Ning HM, Zhang MJ, Xu CW, Yang Y, Ding YL, Wang ZD, et al. EDAG positively regulates erythroid differentiation and modifies GATA1 acetylation through recruiting p300. Stem Cells. 2014;32(8):2278–2289. doi: 10.1002/stem.1723. PubMed DOI
Varghese J, Cohen SM. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in drosophila. Genes Dev. 2007;21(18):2277–2282. doi: 10.1101/gad.439807. PubMed DOI PMC
Parthasarathy R, Palli SR. Molecular analysis of juvenile hormone analogaction in controlling the metamorphosis of the redflour beetle, Tribolium castaneum. Arch Insect Biochem. 2009;70:57–70. doi: 10.1002/arch.20288. PubMed DOI PMC
Minakuchi C, Namiki T, Yoshiyama M, Shinoda T. RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J. 2008;275(11):2919–2931. doi: 10.1111/j.1742-4658.2008.06428.x. PubMed DOI
Beckstead RB, Lam G, Thummel CS. The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biol. 2005;6(12):R99. doi: 10.1186/gb-2005-6-12-r99. PubMed DOI PMC
Kang P, Chang K, Liu Y, Bouska M, Birnbaum A, Karashchuk G, Thakore R, Zheng W, Post S, Brent CS, Li S, Tatar M, Bai H. Drosophila Kruppel homolog 1 represses lipolysis through interaction with dFOXO. Sci Rep. 2017;7(1):16369. PubMed PMC
Schuh R, Aicher W, Gaul U, Côte S, Preiss A, Maier D, Seifert E, Nauber U, Schröder C, Kemler R. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a drosophila segmentation gene. Cell. 1986;47(6):1025–1032. doi: 10.1016/0092-8674(86)90817-2. PubMed DOI
Bayer CA, Holley B, Fristrom JW. A switch inBroad-ComplexZinc-finger isoform expression is regulated posttranscriptionally during the metamorphosis of Drosophila imaginal discs. Dev Biol. 1996;177(1):1–14. doi: 10.1006/dbio.1996.0140. PubMed DOI
Karim FD, Guild GM, Thummel CS. The Drosophila broad-complex plays a key role in controlling ecdysone-regulated gene expression at the onset of metamorphosis. Development. 1993;118(3):977–988. PubMed
Zhou B, Riddiford LM. Hormonal regulation and patterning of the broad-complex in the epidermis and wing discs of the tobacco hornworm, Manduca sexta. Dev Biol. 2001;231(1):125–137. doi: 10.1006/dbio.2000.0143. PubMed DOI
Konopova B, Jindra M. Broad-complex acts downstream of met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. Development. 2008;135(3):559–568. doi: 10.1242/dev.016097. PubMed DOI
Parthasarathy R, Tan A, Bai H, Palli SR. Transcription factor broad suppresses precocious development of adult structures during larval-pupal metamorphosis in the red flour beetle, Tribolium castaneum. Mech Dev. 2008;125(3–4):299–313. doi: 10.1016/j.mod.2007.11.001. PubMed DOI PMC
Suzuki Y, Truman JW, Riddiford LM. The role of broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa. Development. 2008;135(3):569–577. doi: 10.1242/dev.015263. PubMed DOI
Thummel CS. The Drosophila E74 promoter contains essential sequences downstream from the start site of transcription. Genes Dev. 1989;3(6):782–792. doi: 10.1101/gad.3.6.782. PubMed DOI
Saha TT, Shin SW, Dou W, Roy S, Zhao B, Hou Y, Wang XL, Zou Z, Girke T, Raikhel AS. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression. Proc Natl Acad Sci U S A. 2016;113(6):E735–E743. doi: 10.1073/pnas.1523838113. PubMed DOI PMC
Noriega F, Shah D, Wells M. Juvenile hormone controls early trypsin gene transcription in the midgut ofAedes aegypti. Insect Mol Biol. 1997;6(1):63–66. doi: 10.1046/j.1365-2583.1997.00154.x. PubMed DOI
Bitra K, Palli SR. The members of bHLH transcription factor superfamily are required for female reproduction in the red flour beetle, Tribolium castaneum. J Insect Physiol. 2010;56(10):1481–1489. doi: 10.1016/j.jinsphys.2010.03.005. PubMed DOI PMC
Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E, Farina A, Martinez E. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol. 2005;25(23):10220–10234. doi: 10.1128/MCB.25.23.10220-10234.2005. PubMed DOI PMC
King-Jones K, Thummel CS. Nuclear receptors--a perspective from Drosophila. Nat Rev Genet. 2005;6(4):311. doi: 10.1038/nrg1581. PubMed DOI
Kino T, Nordeen SK, Chrousos GP. Conditional modulation of glucocorticoid receptor activities by CREB-binding protein (CBP) and p300. J Steroid Biochem Mol Biol. 1999;70(1):15–25. doi: 10.1016/S0960-0760(99)00100-4. PubMed DOI
Gizard F, Lavallée B, DeWitte F, Hum DW. A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression. J Biol Chem. 2001;276(36):33881–33892. doi: 10.1074/jbc.M100113200. PubMed DOI
Monté D, DeWitte F, Hum DW. Regulation of the human P450scc gene by steroidogenic factor 1 is mediated by CBP/p300. J Biol Chem. 1998;273(8):4585–4591. doi: 10.1074/jbc.273.8.4585. PubMed DOI
Namiki T, Niwa R, Sakudoh T, Shirai K-I, Takeuchi H, Kataoka H. Cytochrome P450 CYP307A1/spook: a regulator for ecdysone synthesis in insects. Biochem Bioph Res Co. 2005;337(1):367–374. doi: 10.1016/j.bbrc.2005.09.043. PubMed DOI
Sutherland T, Unnithan G, Andersen J, Evans P, Murataliev M, Szabo L, Mash E, Bowers W, Feyereisen R. A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proc Natl Acad Sci U S A. 1998;95(22):12884–12889. doi: 10.1073/pnas.95.22.12884. PubMed DOI PMC
Thummel CS, Burtis KC, Hogness DS. Spatial and temporal patterns of E74 transcription during Drosophila development. Cell. 1990;61(1):101–111. doi: 10.1016/0092-8674(90)90218-4. PubMed DOI
Segraves WA, Hogness DS. The E75 ecdysone-inducible gene responsible for the 75B early puff in drosophila encodes two new members of the steroid receptor superfamily. Genes Dev. 1990;4(2):204–219. doi: 10.1101/gad.4.2.204. PubMed DOI
Dubrovsky EB, Dubrovskaya VA, Berger EM. Hormonal regulation and functional role of Drosophila E75A orphan nuclear receptor in the juvenile hormone signaling pathway. Dev Biol. 2004;268(2):258–270. doi: 10.1016/j.ydbio.2004.01.009. PubMed DOI
Cáceres L, Necakov AS, Schwartz C, Kimber S, Roberts IJ, Krause HM. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75. Genes Dev. 2011;25(14):1476–1485. doi: 10.1101/gad.2064111. PubMed DOI PMC
Dubrovsky EB, Dubrovskaya VA, Bernardo T, Otte V, DiFilippo R, Bryan H. The drosophila FTZ-F1 nuclear receptor mediates juvenile hormone activation of E75A gene expression through an intracellular pathway. J Biol Chem. 2011;286(38):33689–33700. doi: 10.1074/jbc.M111.273458. PubMed DOI PMC
Hossain MS, Liu Y, Zhou S, Li K, Tian L, Li S. 20-Hydroxyecdysone-induced transcriptional activity of FoxO upregulates brummer and acid lipase-1 and promotes lipolysis in Bombyx fat body. Insect Biochem Mol Biol. 2013;43(9):829–838. doi: 10.1016/j.ibmb.2013.06.007. PubMed DOI
Lin X, Yu N, Smagghe G. FoxO mediates the timing of pupation through regulating ecdysteroid biosynthesis in the red flour beetle, Tribolium castaneum. Gen Comp Endocr. 2017. PubMed
Kim J, Sebring A, Esch JJ, Kraus ME, Vorwerk K, Magee J, Carroll SB. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature. 1996;382(6587):133–138. doi: 10.1038/382133a0. PubMed DOI
Brummel T, Abdollah S, Haerry TE, Shimell MJ, Merriam J, Raftery L, Wrana JL, O’Connor MB. The drosophila activin receptor baboon signals through dSmad2 and controls cell proliferation but not patterning during larval development. Genes Dev. 1999;13(1):98–111. doi: 10.1101/gad.13.1.98. PubMed DOI PMC
Gibbens YY, Warren JT, Gilbert LI, O’Connor MB. Neuroendocrine regulation of drosophila metamorphosis requires TGFβ/Activin signaling. Development. 2011;138(13):2693–2703. doi: 10.1242/dev.063412. PubMed DOI PMC
Pascual N, Maestro JL, Chiva C, Andreu D, Bellés X. Identification of a tachykinin-related peptide with orexigenic properties in the German cockroach. Peptides. 2008;29(3):386–392. doi: 10.1016/j.peptides.2007.11.010. PubMed DOI
Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci U S A. 2008;105(18):6650–6655. doi: 10.1073/pnas.0800739105. PubMed DOI PMC
Zhou X, Tarver MR, Scharf ME. Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect. Development. 2007;134(3):601–610. doi: 10.1242/dev.02755. PubMed DOI
Zdybicka-Barabas A, Cytryńska M. Apolipophorins and insect immune response. ISJ. 2013;10:58–68.
Patnaik BB, Patnaik HH, Park KB, Jo YH, Lee YS, Han YS. Silencing of apolipophorin-III causes abnormal adult morphological phenotype and susceptibility to Listeria monocytogenes infection in Tenebrio molitor. Entomol Res. 2015;45(2):116–121. doi: 10.1111/1748-5967.12099. DOI
Tan Q-Q, Liu W, Zhu F, Lei C-L, Wang X-P. Fatty acid synthase 2 contributes to diapause preparation in a beetle by regulating lipid accumulation and stress tolerance genes expression. Sci Rep. 2017;7:40509. doi: 10.1038/srep40509. PubMed DOI PMC
Bond ND, Nelliot A, Bernardo MK, Ayerh MA, Gorski KA, Hoshizaki DK, Woodard CT. ssFTZ-F1 and matrix metalloproteinase 2 are required for fat-body remodeling in drosophila. Dev Biol. 2011;360(2):286–296. doi: 10.1016/j.ydbio.2011.09.015. PubMed DOI
Huang Y, Dennehey B, Shi X. Histone lysine methylation, demethylation, and hormonal gene regulation. In: Mandal SS, editor. Gene regulation, epigenetics and hormone signaling: Weiheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. p. 59–100.
Haliscak JP, Beeman RW. Status of malathion resistance in five genera of beetles infesting farm-stored corn, wheat, and oats in the United States. J Econ Entomol. 1983;76(4):717–722. doi: 10.1093/jee/76.4.717. DOI
Parthasarathy R, Tan A, Sun Z, Chen Z, Rankin M, Palli S. Juvenile hormone regulation of male accessory gland activity in the red flour beetle, Tribolium castaneum. Mech Dev. 2009;126(7):563–579. doi: 10.1016/j.mod.2009.03.005. PubMed DOI PMC
Ma L, Pati PK, Liu M, Li QQ, Hunt AG. High throughput characterizations of poly (a) site choice in plants. Methods. 2014;67(1):74–83. doi: 10.1016/j.ymeth.2013.06.037. PubMed DOI PMC
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34(suppl 2):W293–W297. doi: 10.1093/nar/gkl031. PubMed DOI PMC
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42(D1):D199–D205. doi: 10.1093/nar/gkt1076. PubMed DOI PMC