Genes WHEAT FRIZZY PANICLE and SHAM RAMIFICATION 2 independently regulate differentiation of floral meristems in wheat

. 2017 Dec 28 ; 17 (Suppl 2) : 252. [epub] 20171228

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29297328
Odkazy

PubMed 29297328
PubMed Central PMC5751757
DOI 10.1186/s12870-017-1191-3
PII: 10.1186/s12870-017-1191-3
Knihovny.cz E-zdroje

BACKGROUND: Inflorescences of wheat species, spikes, are characteristically unbranched and bear one sessile spikelet at a spike rachis node. Development of supernumerary spikelets (SSs) at rachis nodes or on the extended rachillas is abnormal. Various wheat morphotypes with altered spike morphology, associated with the development of SSs, present an important genetic resource for studies on genetic regulation of wheat inflorescence development. RESULTS: Here we characterized diploid and tetraploid wheat lines of various non-standard spike morphotypes, which allowed for identification of a new mutant allele of the WHEAT FRIZZY PANICLE (WFZP) gene that determines spike branching in diploid wheat Ttiticum monococcum L. Moreover, we found that the development of SSs and spike branching in wheat T. durum Desf. was a result of a wfzp-A/TtBH-A1 mutation that originated from spontaneous hybridization with T. turgidum convar. сompositum (L.f.) Filat. Detailed characterization of the false-true ramification phenotype controlled by the recessive sham ramification 2 (shr2) gene in tetraploid wheat T. turgidum L. allowed us to suggest putative functions of the SHR2 gene that may be involved in the regulation of spikelet meristem fate and in specification of floret meristems. The results of a gene interaction test suggested that genes WFZP and SHR2 function independently in different processes during spikelet development, whereas another spike ramification gene(s) interact(s) with SHR2 and share(s) common functions. CONCLUSIONS: SS mutants represent an important genetic tool for research on the development of the wheat spikelet and for identification of genes that control meristem activities. Further studies on different non-standard SS morphotypes and wheat lines with altered spike morphology will allow researchers to identify new genes that control meristem identity and determinacy, to elucidate the interaction between the genes, and to understand how these genes, acting in concert, regulate the development of the wheat spike.

Zobrazit více v PubMed

Malcomber ST, Preston JC, Reinheimer R, Kossuth J, Kellogg EA. Developmental gene evolution and the origin of grass inflorescence diversity. In: Soltis DE, Soltis PS, Leebens-Mack J, editors. Developmental genetics of the flower, advances in botanical research. Elsevier ltd. 2006. pp. 423–479.

Muramatsu MA. Presumed genetic system determining the number of spikelets per rachis node in the tribe Triticeae. Breed Sci. 2009;59:617–620. doi: 10.1270/jsbbs.59.617. DOI

Sakuma S, Salomon B, Komatsuda T. The domestication syndrome genes responsible for the major changes in plant form in the triticeae crops. Plant Cell Physiol. 2011;52:738–749. doi: 10.1093/pcp/pcr025. PubMed DOI PMC

Dorofeev VF, Korovina ON. Cultivated Flora of the USSR.V.1. Wheat. Leningrad: Kolos Publ; 1979.

Dahlgren BE. Wheat. Chicago: field museum of. Nat Hist. 1922.

Percival J. The wheat plant. London: Duckworth and Co; 1921.

Coffman FA. Supernumerary spikelets in Mindum wheat. J Hered. 1924;5:187–192. doi: 10.1093/oxfordjournals.jhered.a102446. DOI

Dorofeev VF. Branched forms of durum wheat. Selekzia i semenovodstvo. 1969;2:78–9. (in Russian)

Goncharov NP. Comparative genetics of wheats and their related species. In: Editor: V. К. Shumny. Edition: 2nd, Publisher: Academic Publ. House “GEO“, Novosibirsk. 2012. (in Rus).

Amagai Y, Martinek P, Watanabe N, Kuboyama T. Microsatellite mapping of genes for branched spike and soft glumes in Triticum monococcum L. Genet Resour Crop Evol. 2014;61:465–471. doi: 10.1007/s10722-013-0050-9. DOI

Sharman BL. Branched head in wheat and wheat hybrids. Nature. 1944;153:497–498. doi: 10.1038/153497a0. DOI

Swaminathan MS, Chopra VL, Sastry GRK. Expression and stability of induced mutation for branching in bread wheat. Curr Sci. 1966;35:91–92.

Melnik VM. In: Selektsiya Selskhozyaistvennykh Kultur v Altayskom Kraye. SO VASKHNIL, Novosibirsk: Altai Agricultural & Breeding Research Institute; 1988. Genetic analysis of sphaerococcoid mutant of common wheat Triticum aestivum L; pp. 59–70.

Li J, Wang Q, Wei H, Hu X. Yang W. SSR mapping for locus conferring on the triple spikelet trait of the Tibetan triple-spikelet wheat (Triticum aestivum L. concv. Tripletum). Triticeae Genomics Genet. 2011;2:1–6.

Martinek P. Gene resources with non-standard spike morphology in wheat. Proceedings of the 9th International Wheat Genetics Symposium. 1998; 2: 286–288.

Martinek P, Bednar J. Changes of spike morphology (multirow spike-MRS, long glumes-LG) in wheat (Triticum aestivum L.) and their importance for breeding. In: The proceedings of international conference “genetic collections, isogenic and alloplasmic lines”, Novosibirsk, Russia, 2001 pp 192–194.

Klindworth DL, Williams ND, Joppa LR. Inheritance of supernumerary spikelets in a tetraploid wheat cross. Genome. 1990;33:509–514. doi: 10.1139/g90-075. DOI

Amagai Y, Gowayed S, Martinek P, Watanabe N. The third glume phenotype is associated with rachilla branching in the spikes of tetraploid wheat (Triticum L.). Genet Resour Crop Evol. 2017. doi:10.1007/s10722-017-0503-7.

Pennell AL, Halloran GM. Inheritance of supernumerary spikelets in wheat. Euphytica. 1983;32:767–776. doi: 10.1007/BF00042157. DOI

Dobrovolskaya O, Martinek P, Voylokov AV, Korzun V, Röder MS, Börner A. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale) Theor Appl Genet. 2009;119:867–874. doi: 10.1007/s00122-009-1095-1. PubMed DOI

Haque MA, Martinek P, Kobayashi S, Kita I, Ohwaku K, Watanabe N, Kuboyama T. Microsatellite mapping of genes for semi-dwarfism and branched spike in Triticum durum Desf. Var. ramosoobscurum Jakubz. “Vetvistokoloskaya”. Genet Resour Crop Evol. 2012;59:831–837. doi: 10.1007/s10722-011-9722-5. DOI

Klindworth DL, Williams ND, Joppa LR. Chromosomal location of genes for supernumerary spikelets in tetraploid wheat. Genome. 1990;33:515–520. doi: 10.1139/g90-076. DOI

Klindworth DL, Klindworth MM, Williams ND. Telosomic mapping of four genetic markers in durum wheat. J Hered. 1997;88:229–232. doi: 10.1093/oxfordjournals.jhered.a023093. DOI

Yang W-Y, Lu B-R, Hu X-R, Yu Y, Zhang Y. Inheritance of the triple-spikelet character in a Tibetan landrace of common wheat. Genet Resour Crop Ev. 2005;52:847–851. doi: 10.1007/s10722-003-6089-2. DOI

Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, et al. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol. 2015;167:189–199. doi: 10.1104/pp.114.250043. PubMed DOI PMC

Echeverry-Solarte M, Kumar A, Kianian S, Mantovani EE, Simsek S. et al, Genome-wide genetic dissection of supernumerary spikelet and related traits in common Wheat. Plant Gen. 2014;7. PubMed

Poursarebani N, Seidensticker T, Koppolu R, Trautewig C, Gawronski P, et al. The genetic basis of composite spike form in barley and ‘miracle-wheat. Genetics. 2015;201:155–165. doi: 10.1534/genetics.115.176628. PubMed DOI PMC

Zhang W, Li A, Tian J, Zhao L. Development of near-isogenic lines of wheat carrying different spike branching genes and their agronomic and spike characters. J Agric Sci. 2012;4:215–221.

Zhang RQ, Hou F, Chen J, Chen SL, Xing LP, Feng YG, Cao AZ. Agronomic characterization and genetic analysis of the supernumerary spikelet in tetraploid wheat (Triticum turgidum L.) J Integrative Agr. 2017;16:1304–1311. doi: 10.1016/S2095-3119(16)61469-7. DOI

Amagai Y, Aliyeva AJ, Aminov NK, Martinek P, Watanabe N, Kuboyama T. Microsatellite mapping of the genes for sham ramification and extra glume in spikelets of tetraploid wheat. Genet Resour Crop Evol. 2014;61:491–498. doi: 10.1007/s10722-013-0052-7. DOI

Dobrovolskaya OB, Pont C, Orlov YL, Salse J. Development of new SSR markers for homoeologous WFZP gene loci based on the study of the structure and location of microsatellites in gene-rich regions of chromosomes 2AS, 2BS, and 2DS in bread wheat. Russian J Genet: Applied Res. 2016;6:330–7.

Bonnett OT. The development of the wheat spike. J Agr Res. 1936;53:445–451.

Murai K, Takumi S, Koga H, Ogihara Y. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J. 2002;29:169–181. doi: 10.1046/j.0960-7412.2001.01203.x. PubMed DOI

Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, et al. Ppd-1 is a key regulator ofinflorescence architecture and paired spikelet development in wheat. Nature Plants. 2015:14016. PubMed

Dobrovol’skaia OB, Badaeva ED, Adonina IG, Popova OM, Krasnikov AA, et al. Investigation of morphogenesis of inflorescence and determination of the nature of inheritance of "supernumerary spikelets" trait of bread wheat (Triticum aestivum L.) mutant line. Russ J Dev Biol. 2014;45:361–366. doi: 10.1134/S1062360414060034. PubMed DOI

Derbyshire P, Byrne ME. MORE SPIKELETS 1 is required for spikelet fate in the inflorescence of Brachypodium. Plant Physiol. 2013;161:1291–302. PubMed PMC

Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development. 2003;130:3841–50. PubMed

Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science. 2002;298:1238–1241. doi: 10.1126/science.1076920. PubMed DOI

Bai X, Huang Y, Mao D, Wen M, Zhang L, Xing Y. Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice. Scientific reports. 2016;6:19022 | doi:10.1038/srep190221. PubMed PMC

Shitsukawa N, Kinjo H, Takumi S. Murai К. Heterochronic development of the floret meristem determines grain number per spikelet in diploid, tetraploid and hexaploid wheats. Ann Bot. 2009;104:243–251. doi: 10.1093/aob/mcp129. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...