Island- and lake-like parallel adaptive radiations replicated in rivers

. 2018 Jan 10 ; 285 (1870) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid29298932

Parallel adaptive radiations have arisen following the colonization of islands by lizards and lakes by fishes. In these classic examples, parallel adaptive radiation is a response to the ecological opportunities afforded by the colonization of novel ecosystems and similar adaptive landscapes that favour the evolution of similar suites of ecomorphs, despite independent evolutionary histories. Here, we demonstrate that parallel adaptive radiations of cichlid fishes arose in South American rivers. Speciation-assembled communities of pike cichlids (Crenicichla) have independently diversified into similar suites of novel ecomorphs in the Uruguay and Paraná Rivers, including crevice feeders, periphyton grazers and molluscivores. There were bursts in phenotypic evolution associated with the colonization of each river and the subsequent expansion of morphospace following the evolution of the ecomorphs. These riverine clades demonstrate that characteristics emblematic of textbook parallel adaptive radiations of island- and lake-dwelling assemblages are feasible evolutionary outcomes even in labile ecosystems such as rivers.

Zobrazit více v PubMed

Simpson GG. 1953. The major features of evolution. New York, NY: Columbia University Press.

Schluter D. 2000. The ecology of adaptive radiation. Oxford, UK: Oxford University Press.

Givnish TJ. 2015. Adaptive radiation versus ‘radiation' and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytol. 207, 297–303. (10.1111/nph.13482) PubMed DOI

Losos J. 2009. Lizards in an evolutionary tree: ecology and adaptive radiation of anoles, vol. 10 Berkeley, CA: University of California Press.

Seehausen O. 2015. Process and pattern in cichlid radiations: inferences for understanding unusually high rates of evolutionary diversification. New Phytol. 207, 304–312. (10.1111/nph.13450) PubMed DOI

Harmon LJ, Kolbe JJ, Cheverud JM, Losos JB. 2005. Convergence and the multidimensional niche. Evolution 59, 409–421. (10.1111/j.0014-3820.2005.tb00999.x) PubMed DOI

Mahler DL, Revell LJ, Glor RE, Losos JB. 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64, 2731–2745. (10.1111/j.1558-5646.2010.01026.x) PubMed DOI

Mahler DL, Ingram T, Revell LJ, Losos JB. 2013. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295. (10.1126/science.1232392) PubMed DOI

Elmer KR, Fan S, Kusche H, Spreitzer ML, Kautt AF, Franchini P, Meyer A. 2014. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Comm. 5, 5168 (10.1038/ncomms6168.) PubMed DOI

Kocher TD, Conroy JA, McKaye KR, Stauffer JR. 1993. Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol. Phylogenet. Evol. 2, 158–165. (10.1006/mpev.1993.1016) PubMed DOI

Schliewen U, Rassmann K, Markmann M, Markert J, Kocher T, Tautz D. 2001. Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Mol. Ecol. 10, 1471–1488. (10.1046/j.1365-294X.2001.01276.x) PubMed DOI

Wagner CE, Harmon LJ, Seehausen O. 2014. Cichlid species-area relationships are shaped by adaptive radiations that scale with area. Ecol. Lett. 17, 583–592. (10.1111/ele.12260) PubMed DOI

Machado-Schiaffino G, Kautt AF, Kusche H, Meyer A. 2015. Parallel evolution in Ugandan crater lakes: repeated evolution of limnetic body shapes in haplochromine cichlid fish. BMC Evol. Biol. 15, 1 (10.1186/s12862-015-0287-3) PubMed DOI PMC

Rundle HD, Nagel L, Boughman JW, Schluter D. 2000. Natural selection and parallel speciation in sympatric sticklebacks. Science 287, 306–308. (10.1126/science.287.5451.306) PubMed DOI

Østbye K, et al. 2006. Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Mol. Ecol. 15, 3983–4001. (10.1111/j.1365-294X.2006.03062.x) PubMed DOI

Blackledge TA, Gillespie RG. 2004. Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. Proc. Natl Acad. Sci. USA 101, 16 228–16 233. (10.1073/pnas.0407395101) PubMed DOI PMC

Gillespie R. 2004. Community assembly through adaptive radiation in Hawaiian spiders. Science 303, 356–359. (10.1126/science.1091875) PubMed DOI

Givnish TJ, et al. 2009. Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proc. R. Soc. B 276, 407–416. (10.1098/rspb.2008.1204) PubMed DOI PMC

Johnson MS, Murray J, Clarke B. 2000. Parallel evolution in Marquesan partulid land snails. Biol. J. Linn. Soc. 69, 577–598. (10.1111/j.1095-8312.2000.tb01224.x) DOI

Sullivan JP, Lavoué S, Hopkins CD. 2002. Discovery and phylogenetic analysis of a riverine species flock of African electric fishes (Mormyroidae: Teleostei). Evolution 56, 597–616. (10.1111/j.0014-3820.2002.tb01370.x) PubMed DOI

Schwarzer J, Misof B, Ifuta SN, Schliewen UK. 2011. Time and origin of cichlid colonization of the lower Congo rapids. PLoS ONE 6, e22380 (10.1371/journal.pone.0022380) PubMed DOI PMC

Burress ED. 2015. Cichlid fishes as models of ecological diversification: patterns, mechanisms, and consequences. Hydrobiologia 748, 7–27. (10.1007/s10750-014-1960-z) DOI

Piálek L, Říčan O, Casciotta J, Almirón A, Zrzavý J. 2012. Multilocus phylogeny of Crenicichla (Teleostei: Cichlidae), with biogeography of the C. lacustris group: species flocks as a model for sympatric speciation in rivers. Mol. Phylogenet. Evol. 62, 46–61. (10.1016/j.ympev.2011.09.006) PubMed DOI

de Lucena CAS, Kulander SO. 1992. The Crenicichla (Teleoctei: Cichlidae) species of the Uruguai River drainage in Brazil. Ichthyol. Explorat. Fresh. 3, 97–192.

Serra WS, Duarte A, Burress ED, Loureiro M. 2011. Perciformes, Cichlidae, Crenicichla tendybaguassu Lucena and Kullander, 1992: first record for Uruguay. Check List 7, 357–359. (10.15560/7.3.357) DOI

Burress ED, Duarte A, Serra WS, Loueiro M, Gangloff MM, Siefferman L. 2013. Functional diversification within a predatory species flock. PLoS ONE 8, e80929 (10.1371/journal.pone.0080929) PubMed DOI PMC

Piálek L, Dragová K, Casciotta J, Almirón A, Říčan O. 2015. Description of two new species of Crenicichla (Teleostei: Cichlidae) from the lower Iguazú River with a taxonomic reappraisal of C. iguassuensis, C. tesay and C. yaha. Hist. Nat. 5, 5–27.

Říčan O, Piálek L, Dragova K, Novak J. 2016. Diversity and evolution of the Middle American cichlid fishes (Teleostei: Cichlidae) with revised classification. Vert. Zool. 66, 3–102.

Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. 2011. Stacks: building and genotyping loci de novo from short-read sequences. G3 1, 171–182. (10.1534/g3.111.000240) PubMed DOI PMC

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. (10.1093/bioinformatics/btu033) PubMed DOI PMC

Posada D. 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. (10.1093/molbev/msn083) PubMed DOI

Leaché AD, Banbury BL, Felsenstein J, Nieto-Montes de Oca A, Stamatakis A. 2015. Short tree, long tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047. (10.1093/sysbio/syv053) PubMed DOI PMC

Burress ED, Alda F, Duarte A, Loureiro M, Armbruster JW, Chakrabarty P. In press. Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock. J. Evol. Biol. (10.1111/jeb.13196) PubMed DOI

Eastman JM, Harmon LJ, Tank DC. 2013. Congruification: support for time scaling large phylogenetic trees. Methods Ecol. Evol 4, 688–691. (10.1111/2041-210X.12051) DOI

Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Hulsey CD, Wainwright PC, Near TJ. 2013. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc. R. Soc. B 280, 20131733 (10.1098/rspb.2013.1733) PubMed DOI PMC

Smith SA, O'Meara BC. 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690. (10.1093/bioinformatics/bts492) PubMed DOI

Rohlf FJ. 2004. Tpsutil, file utility program. version 1.58. Stony Brook, NY: Department of Ecology and Evolution, State University of New York at Stony Brook.

Rohlf FJ. 2006. Tpsdig, version 2.17. Stony Brook, NY: Department of Ecology and Evolution, State University of New York at Stony Brook.

Rohlf FJ. 2007. Tpsrelw version 1.54. Stony Brook, NY: Department of Ecology and Evolution, State University of New York at Stony Brook.

Ingram T, Mahler DL. 2013. SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike information criterion. Methods Ecol. Evol. 4, 416–425. (10.1111/2041-210X.12034) DOI

Slayton CT. 2008. Is convergence surprising? An examination of the frequency of convergence in simulated datasets. J. Theor. Biol. 252, 1–14. (10.1016/j.jtbi.2008.01.008) PubMed DOI

Maddison WP, Maddison DR. 2015. Mesquite: a modular system for evolutionary analysis. Version 3.02. See http://mesquiteproject.org.

Bollback JP. 2006. Stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (10.1186/1471-2105-7-88) PubMed DOI PMC

Revell LJ. 2012. Phytools: an R package for ohylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. (10.1111/j.2041-210X.2011.00169.x) DOI

Schluter D, Price T, Mooers AØ, Ludwig D. 1997. Likelihood of ancestor states in adaptive radiation. Evolution 51, 1699–1711. (10.1111/j.1558-5646.1997.tb05095.x) PubMed DOI

Pagel M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48, 612–622. (10.1080/106351599260184) DOI

Nielsen R. 2002. Mapping mutations on phylogenies. Syst. Biol. 51, 729–739. (10.1080/10635150290102393) PubMed DOI

Huelsenbeck JP, Nielsen R, Bollback JP. 2003. Stochastic mapping of morphological characters. Syst. Biol. 52, 131–134. (10.1080/10635150390192780) PubMed DOI

Sidlauskas B. 2008. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156. (10.1111/j.1558-5646.2008.00519.x) PubMed DOI

Maddison WP. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Syst. Biol. 40, 304–314. (10.1093/sysbio/40.3.304) DOI

Revell LJ, Johnson MA, Schulte JA, Kolbe JJ, Losos JB. 2007. A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution 61, 2898–2912. (10.1111/j.1558-5646.2007.00225.x) PubMed DOI

Rabosky DL. 2014. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (10.1371/journal.pone.0089543) PubMed DOI PMC

Rabosky DL, Donnellan SC, Grundler M, Lovette IJ. 2014. Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Syst. Biol. 63, 610–627. (10.1093/sysbio/syu025) PubMed DOI

Rabosky DL, Grundler M, Anderson C, Shi JJ, Brown JW, Huang H, Larson JG. 2014. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707. (10.1111/2041-210X.12199) DOI

Plummer M, Best N, Cowles K, Vines K. 2006. CODA: Convergence diagnosis and output analysis for MCMC. R News 6, 7–11.

Moore BR, Höhna S, May MR, Rannala B, Huelsenbeck JP. 2016. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 9569–9574. (10.1073/pnas.1518659113) PubMed DOI PMC

Mitchell JS, Rabosky DL. 2016. Bayesian model selection with BAMM: effects of the model prior on the inferred number of diversification shifts. Methods Ecol. Evol. 8, 37–46. (10.1111/2041-210X.12626) DOI

Rabosky DL, Mitchell JS, Chang J. 2017. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498. (10.1093/sysbio/syx037) PubMed DOI PMC

McPeek MA. 1995. Testing hypotheses about evolutionary change on single branches of a phylogeny using evolutionary contrasts. Am. Nat. 145, 686–703. (10.1086/285763) DOI

Freckleton RP, Harvey PH. 2006. Detecting non-Brownian trait evolution in adaptive radiations. PLoS. Biol. 4, e373 (10.1371/journal.pbio.0040373) PubMed DOI PMC

Ingram T, Kai Y. 2014. The geography of morphological convergence in the radiations of Pacific Sebastes rockfishes. Am. Nat. 184, E115–E131. (10.1086/678053) PubMed DOI

Losos JB. 2011. Convergence, adaptation, and constraint. Evolution 65, 1827–1840. (10.1111/j.1558-5646.2011.01289.x) PubMed DOI

Burress ED. 2016. Ecological diversification associated with the pharyngeal jaw diversity of Neotropical cichlid fishes. J. Anim. Ecol. 85, 302–313. (10.1111/1365-2656.12457) PubMed DOI

Seehausen O, Wagner CE. 2014. Speciation in freshwater fishes. Ann. Rev. Ecol. Evol. Syst. 45, 621–651. (10.1146/annurev-ecolsys-120213-091818) DOI

Glor RE. 2010. Phylogenetic insights on adaptive radiation. Ann. Rev. Ecol. Evol. Syst. 41, 251–270. (10.1146/annurev.ecolsys.39.110707.173447) DOI

Albert JS, Carvalho TP. 2011. Neogene assembly of modern faunas. In Historical biogeography of neotropical freshwater fishes (eds Albert JS, Reis R), pp. 119–136. Berkeley, CA: University of California Press.

Brea M, Zucol A. 2011. The Paraná-Paraguay Basin: geology and paleoenvironments. In Historical biogeography of neotropical freshwater fishes (eds Albert JS, Reis R), pp. 69–88. Berkeley, CA: University of California Press.

Carvalho TP, Albert JS. 2011. The Amazon-Paraguay divide. In Historical biogeography of neotropical freshwater fishes (eds Albert J, Reis R), pp. 193–202. Berkeley, CA: University of California Press.

Albert JS, Bart HL Jr, Reis RE. 2011. Species richness and cladal diversity. In Historical biogeography of neotropical freshwater fishes (eds Albert JS, Reis RE), pp. 89–104. Berkeley, CA: University of California Press.

Burress ED, Tan M. 2017. Ecological opportunity alters the timing and shape of adaptive radiation. Evolution 17, 2650–2660. (10.1111/evo.13362) PubMed DOI

Hulsey CD, Roberts RJ, Loh YH, Rupp MF, Streelman JT. 2013. Lake Malawi cichlid evolution along a benthic/limnetic axis. Ecol. Evol. 3, 2262–2272. (10.1002/ece3.633) PubMed DOI PMC

Cooper WJ, Parsons K, McIntyre A, Kern B, McGee-Moore A, Albertson RC. 2010. Bentho-pelagic divergence of cichlid feeding architecture was prodigious and consistent during multiple adaptive radiations within African rift-lakes. PLoS ONE 5, e9551 (10.1371/journal.pone.0009551) PubMed DOI PMC

Kusche H, Recknagel H, Elmer KR, Meyer A. 2014. Crater lake cichlids individually specialize along the benthic–limnetic axis. Ecol. Evol. 4, 1127–1139. (10.1002/ece3.1015) PubMed DOI PMC

López-Fernández H, Arbour JH, Winemiller K, Honeycutt RL. 2013. Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution 67, 1321–1337. (10.1111/evo.12038) PubMed DOI

Burress ED, Piálek L, Casciotta JR, Almirón A, Tan M, Armbruster JW, Řĩcan O. Data from: Island- and lake-like parallel adaptive radiations replicated in rivers. Dryad Digital Repository (10.5061/dryad.678rp) PubMed DOI PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.678rp

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...