Characterization of a long-chain α-galactosidase from Papiliotrema flavescens

. 2018 Jan 04 ; 34 (2) : 19. [epub] 20180104

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29302817

Grantová podpora
2/0023/14 the Scientific Grant Agency of Ministry of Education, Science, Research and Sport of Slovak Republic
VEGA 2/0058/16 the Scientific Grant Agency of Ministry of Education, Science, Research and Sport of Slovak Republic

Odkazy

PubMed 29302817
DOI 10.1007/s11274-017-2403-6
PII: 10.1007/s11274-017-2403-6
Knihovny.cz E-zdroje

α-Galactosidases are assigned to the class of hydrolases and the subclass of glycoside hydrolases (GHs). They belong to six GH families and include the only characterized α-galactosidases from yeasts (GH 27, Saccharomyces cerevisiae). The present study focuses on an investigation of the lactose-inducible α-galactosidase produced by Papiliotrema flavescens. The enzyme was present on the surface of cells and in the cytosol. Its temperature optimum was about 60 °C and the pH optimum was 4.8; the pH stability ranged from 3.2 to 6.6. This α-galactosidase also exhibited transglycosylation activity. The cytosol α-galactosidase with a molecular weight about 110 kDa, was purified using a combination of liquid chromatography techniques. Three intramolecular peptides were determined by the partial structural analysis of the sequences of the protein isolated, using MALDI-TOF/TOF mass spectrometry. The data obtained recognized the first yeast α-galactosidase, which belongs to the GH 36 family. The bioinformatics analysis and homology modeling of a 210 amino acids long C-terminal sequence (derived from cDNA) confirmed the correctness of these findings. The study was also supplemented by the screening of capsular cryptococcal yeasts, which produce the surface lactose-inducible α- and β-galactosidases. The production of the lactose-inducible α-galactosidases was not found to be a general feature within the yeast strains examined and, therefore, the existing hypothesis on the general function of this enzyme in cryptococcal capsule rearrangement cannot be confirmed.

Zobrazit více v PubMed

Nature. 1970 Aug 15;227(5259):680-5 PubMed

J Biol Chem. 1970 Aug 10;245(15):3945-55 PubMed

Biochem J. 1998 Jun 15;332 ( Pt 3):789-97 PubMed

Nat Protoc. 2006;1(6):2856-60 PubMed

Appl Microbiol Biotechnol. 1999 Nov;52(5):681-8 PubMed

Carbohydr Res. 1997 Dec;305(1):83-91 PubMed

Zentralbl Bakteriol. 1996 Aug;284(4):475-95 PubMed

Biosci Biotechnol Biochem. 1995 Apr;59(4):619-23 PubMed

Biochim Biophys Acta. 2005 Nov 15;1726(2):206-16 PubMed

Carbohydr Res. 1995 Nov 30;278(1):129-42 PubMed

J Basic Microbiol. 2006;46(6):470-9 PubMed

Appl Microbiol Biotechnol. 2009 Jul;83(5):875-84 PubMed

Prep Biochem. 1990;20(3-4):263-96 PubMed

Z Naturforsch C. 2005 Nov-Dec;60(11-12):899-905 PubMed

J Proteomics. 2012 Jul 16;75(13):4027-37 PubMed

Antonie Van Leeuwenhoek. 2007 Jul;92(1):29-36 PubMed

Biochem J. 1999 Apr 1;339 ( Pt 1):43-53 PubMed

Eur J Biochem. 1996 Aug 15;240(1):104-11 PubMed

Anal Chem. 2003 Feb 1;75(3):663-70 PubMed

Carbohydr Res. 2002 Feb 11;337(3):221-8 PubMed

Mol Microbiol. 2007 May;64(3):771-81 PubMed

Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998-9002 PubMed

FEMS Microbiol Lett. 1993 Aug 15;112(1):35-41 PubMed

Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 PubMed

Appl Environ Microbiol. 1993 May;59(5):1347-53 PubMed

J Biol Chem. 2012 Nov 16;287(47):39642-52 PubMed

Stud Mycol. 2015 Jun;81:85-147 PubMed

Nucleic Acids Res. 2003 Jul 1;31(13):3763-6 PubMed

Biochim Biophys Acta. 1981 Apr 17;674(1):71-7 PubMed

Carbohydr Res. 2000 Oct 20;329(1):65-73 PubMed

Biochim Biophys Acta. 2001 Nov 15;1524(1):27-37 PubMed

Biotechnol Appl Biochem. 1993 Jun;17 ( Pt 3):361-71 PubMed

Biochemistry. 2007 Mar 20;46(11):3319-30 PubMed

Science. 2005 Feb 25;307(5713):1321-4 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...