Age-Related Differences in Hearing Function and Cochlear Morphology between Male and Female Fischer 344 Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29354051
PubMed Central
PMC5758597
DOI
10.3389/fnagi.2017.00428
Knihovny.cz E-zdroje
- Klíčová slova
- Fischer 344 rats, aging, cochlear morphology, gender differences, hearing function, stria vascularis,
- Publikační typ
- časopisecké články MeSH
Fischer 344 (F344) rats represent a strain that is frequently used as a model for fast aging. In this study, we systematically compare the hearing function during aging in male and female F344 rats, by recording auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). In addition to this, the functional parameters are correlated with the cochlear histology. The parameters of the hearing function were not different in the young (3-month-old) male and female F344 rats; the gender differences occurred only in adult and aged animals. In 8-24-month-old males, the ABR thresholds were higher and the ABR amplitudes were smaller than those measured in females of the same age. There were no gender differences in the neural adaptation tested by recording ABRs, elicited by a series of clicks with varying inter-click interval (ICI). Amplitudes of DPOAEs in both the males and females decreased with age, but in the males, the decrease of DPOAE amplitudes was faster. In males older than 20 months, the DPOAEs were practically absent, whereas in 20-24-month-old females, the DPOAEs were still measurable. There were no gender differences in the number of surviving outer hair cells (OHC) and the number of inner hair cell ribbon synapses in aged animals. The main difference was found in the stria vascularis (SV). Whereas the SV was well preserved in females up to the age of 24 months, in most of the age-matched males the SV was evidently deteriorated. The results demonstrate more pronounced age-related changes in the cochlear morphology, hearing thresholds, ABR amplitudes and DPOAE amplitudes in F344 males compared with females.
Faculty of Medicine University of Padova Padova Italy
Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Abrass C. K., Adcox M. J., Raugi G. J. (1995). Aging-associated changes in renal extracellular matrix. Am. J. Pathol. 146, 742–752. PubMed PMC
Baylis C., Corman B. (1998). The aging kidney: insights from experimental studies. J. Am. Soc. Nephrol. 9, 699–709. PubMed
Bielefeld E. C., Coling D., Chen G. D., Li M., Tanaka C., Hu B. H., et al. . (2008). Age-related hearing loss in the Fischer 344/NHsd rat substrain. Hear. Res. 241, 26–33. 10.1016/j.heares.2008.04.006 PubMed DOI PMC
Bizon J. L., LaSarge C. L., Montgomery K. S., McDermott A. N., Setlow B., Griffith W. H. (2009). Spatial reference and working memory across the lifespan of male Fischer 344 rats. Neurobiol. Aging 30, 646–655. 10.1016/j.neurobiolaging.2007.08.004 PubMed DOI PMC
Buckiova D., Popelar L., Syka J. (2006). Collagen changes in the cochlea of aged Fischer 344 rats. Exp. Gerontol. 41, 296–302. 10.1016/j.exger.2005.11.010 PubMed DOI
Burianová J., Ouda L., Profant O., Syka J. (2009). Age-related changes in GAD levels in the central auditory system of the rat. Exp. Gerontol. 44, 161–169. 10.1016/j.exger.2008.09.012 PubMed DOI
Chen G. D., Li M., Tanaka C., Bielefeld E. C., Hu B. H., Kermany M. H., et al. . (2009). Aging outer hair cells (OHCs) in the Fischer 344 rat cochlea: function and morphology. Hear. Res. 248, 39–47. 10.1016/j.heares.2008.11.010 PubMed DOI
DiLoreto D., Jr., Cox C., Grover D. A., Lazar E., del Cerro C., del Cerro M. (1994). The influences of age, retinal topography, and gender on retinal degeneration in the Fischer 344 rat. Brain Res. 647, 181–191. 10.1016/0006-8993(94)91316-1 PubMed DOI
Fetoni A. R., Picciotti P. M., Paludetti G., Troiani D. (2011). Pathogenesis of presbycusis in animal models: a review. Exp. Gerontol. 46, 413–425. 10.1016/j.exger.2010.12.003 PubMed DOI
Gates G. A., Mills J. H. (2005). Presbycusis. Lancet 366, 1111–1120. 10.1016/S0140-6736(05)67423-5 PubMed DOI
Gratton M. A., Schulte B. A. (1995). Alterations in microvasculature are associated with atrophy of the stria vascularis in quiet-aged gerbils. Hear. Res. 82, 44–52. 10.1016/0378-5955(94)00161-i PubMed DOI
Horner K. C., Cazals Y., Guieu R., Lenoir M., Sauze N. (2007). Experimental estrogen-induced hyperprolactinemia results in bone-related hearing loss in the guinea pig. Am. J. Physiol. Endocrinol. Metab. 293, E1224–E1232. 10.1152/ajpendo.00279.2007 PubMed DOI
Huang Q., Tang J. (2010). Age-related hearing loss or presbycusis. Eur. Arch. Otorhinolaryngol. 267, 1179–1191. 10.1007/s00405-010-1270-7 PubMed DOI
Kwekel J. C., Desai V. G., Moland C. L., Vijay V., Fuscoe J. C. (2013). Life cycle analysis of kidney gene expression in male F344 rats. PLoS One 8:e75305. 10.1371/journal.pone.0075305 PubMed DOI PMC
Kwekel J. C., Vijay V., Desai V. G., Moland C. L., Fuscoe J. C. (2015). Age and sex differences in kidney microRNA expression during the life span of F344 rats. Biol. Sex Differ. 6:1. 10.1186/s13293-014-0019-1 PubMed DOI PMC
Liu H., Li Y., Chen L., Zhang Q., Pan N., Nichols D. H., et al. . (2016). Organ of corti and stria vascularis: is there an interdependence for survival? PLoS One 11:e0168953. 10.1371/journal.pone.0168953 PubMed DOI PMC
Marano R. J., Tickner J., Redmond S. L. (2012). Age related changes in gene expression within the cochlea of C57BL/6J mice. Aging Clin. Exp. Res. 24, 603–611. 10.3275/8590 PubMed DOI
Marano R. J., Tickner J., Redmond S. L. (2013). Prolactin expression in the cochlea of aged BALB/c mice is gender biased and correlates to loss of bone mineral density and hearing loss. PLoS One 8:e63952. 10.1371/journal.pone.0063952 PubMed DOI PMC
Markham J. A., Juraska J. M. (2002). Aging and sex influence the anatomy of the rat anterior cingulate cortex. Neurobiol. Aging 23, 579–588. 10.1016/s0197-4580(02)00004-0 PubMed DOI
Melichar I., Syka J. (1978). The effects of ethacrynic acid upon the potassium concentration in guinea pig cochlear fluids. Hear. Res. 1, 35–41. 10.1016/0378-5955(78)90007-2 PubMed DOI
Meltser I., Tahera Y., Simpson E., Hultcrantz M., Charitidi K., Gustafsson J. A., et al. . (2008). Estrogen receptor β protects against acoustic trauma in mice. J. Clin. Invest. 118, 1563–1570. 10.1172/JCI32796 PubMed DOI PMC
Metka M., Holzer G., Raimann H., Heytmanek G., Hartmann B., Kurz C. (1994). The role of prolactin in the menopause. Maturitas 20, 151–154. 10.1016/0378-5122(94)90011-6 PubMed DOI
Oghan F., Coksuer H. (2012). Does hyperandrogenism have an effect on hearing loss in patients with polycystic ovary syndrome? Auris Nasus Larynx 39, 365–368. 10.1016/j.anl.2011.06.006 PubMed DOI
Ohlemiller K. K., Lett J. M., Gagnon P. M. (2006). Cellular correlates of age-related endocochlear potential reduction in a mouse model. Hear. Res. 220, 10–26. 10.1016/j.heares.2006.06.012 PubMed DOI
Ouda L., Burianova J., Syka J. (2012). Age-related changes in calbindin and calretinin immunoreactivity in the central auditory system of the rat. Exp. Gerontol. 47, 497–506. 10.1016/j.exger.2012.04.003 PubMed DOI
Ouda L., Profant O., Syka J. (2015). Age-related changes in the central auditory system. Cell Tissue Res. 361, 337–358. 10.1007/s00441-014-2107-2 PubMed DOI
Popelar J., Groh D., Pelánová J., Canlon B., Syka J. (2006). Age-related changes in cochlear and brainstem auditory functions in Fischer 344 rats. Neurobiol. Aging 27, 490–500. 10.1016/j.neurobiolaging.2005.03.001 PubMed DOI
Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. 10.1038/nmeth.2089 PubMed DOI PMC
Sellick P. M., Johnstone B. M. (1974). Differential effects of ouabain and ethacrynic acid on the labyrinthine potentials. Pflugers Arch. 352, 339–350. 10.1007/bf00585686 PubMed DOI
Seriwatanachai D., Thongchote K., Charoenphandhu N., Pandaranandaka J., Tudpor K., Teerapornpuntakit J., et al. . (2008). Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor κB ligand/osteoprotegerin ratio. Bone 42, 535–546. 10.1016/j.bone.2007.11.008 PubMed DOI
Stenberg A., Wang H., Fish J., III., Schrott-Fischer A., Sahlin L., Hultcrantz M. (2001). Estrogen receptors in the normal adult and developing human inner ear and in Turner syndrome. Hear. Res. 157, 87–92. 10.1016/s0378-5955(01)00280-5 PubMed DOI
Syka J. (2010). The Fischer 344 rat as a model of presbycusis. Hear. Res. 264, 70–78. 10.1016/j.heares.2009.11.003 PubMed DOI
World Health Organization (2017). Deafness and hearing loss. Available online at: http://www.who.int/mediacentre/factsheets/fs300/en/