Multiple Roles of Pitx2 in Cardiac Development and Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29367545
PubMed Central
PMC5753117
DOI
10.3390/jcdd4040016
PII: jcdd4040016
Knihovny.cz E-zdroje
- Klíčová slova
- Pitx2, atrial fibrillation, congenital heart diseases, left/right signaling,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cardiac development is a complex morphogenetic process initiated as bilateral cardiogenic mesoderm is specified at both sides of the gastrulating embryo. Soon thereafter, these cardiogenic cells fuse at the embryonic midline configuring a symmetrical linear cardiac tube. Left/right bilateral asymmetry is first detected in the forming heart as the cardiac tube bends to the right, and subsequently, atrial and ventricular chambers develop. Molecular signals emanating from the node confer distinct left/right signalling pathways that ultimately lead to activation of the homeobox transcription factor Pitx2 in the left side of distinct embryonic organ anlagen, including the developing heart. Asymmetric expression of Pitx2 has therefore been reported during different cardiac developmental stages, and genetic deletion of Pitx2 provided evidence of key regulatory roles of this transcription factor during cardiogenesis and thus congenital heart diseases. More recently, impaired Pitx2 function has also been linked to arrhythmogenic processes, providing novel roles in the adult heart. In this manuscript, we provide a state-of-the-art review of the fundamental roles of Pitx2 during cardiogenesis, arrhythmogenesis and its contribution to congenital heart diseases.
Zobrazit více v PubMed
Moorman A.F., Christoffels V.M. Cardiac chamber formation: Development, genes, and evolution. Physiol. Rev. 2003;83:1223–1267. doi: 10.1152/physrev.00006.2003. PubMed DOI
Garcia-Martinez V., Schoenwolf G.C. Positional control of mesoderm movement and fate during avian gastrulation and neurulation. Dev. Dyn. 1992;193:249–256. doi: 10.1002/aja.1001930305. PubMed DOI
Garcia-Martinez V., Schoenwolf G.C. Primitive-streak origin of the cardiovascular system in avian embryos. Dev. Biol. 1993;159:706–719. doi: 10.1006/dbio.1993.1276. PubMed DOI
Franco D., Campione M., Kelly R., Zammit P.S., Buckingham M., Lamers W.H., Moorman A.F. Multiple transcriptional domains, with distinct left and right components, in the atrial chambers of the developing heart. Circ. Res. 2000;87:984–991. doi: 10.1161/01.RES.87.11.984. PubMed DOI
Anderson R.H., Webb S., Brown N.A., Lamers W., Moorman A. Development of the heart: (3) Formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart. 2003;89:1110–1118. doi: 10.1136/heart.89.9.1110. PubMed DOI PMC
Anderson R.H., Webb S., Brown N.A., Lamers W., Moorman A. Development of the heart: (2) Septation of the atriums and ventricles. Heart. 2003;89:949–958. doi: 10.1136/heart.89.8.949. PubMed DOI PMC
Campione M., Ros M.A., Icardo J.M., Piedra E., Christoffels V.M., Schweickert A., Blum M., Franco D., Moorman A.F. Pitx2 expression defines a left cardiac lineage of cells: Evidence for atrial and ventricular molecular isomerisms in the iv/iv mice. Dev. Biol. 2001;231:252–264. doi: 10.1006/dbio.2000.0133. PubMed DOI
Kathiriya I.S., Srivastava D. Left-right asymmetry and cardiac looping: Implications for cardiac development and congenital heart disease. Am. J. Med. Genet. 2000;97:271–279. doi: 10.1002/1096-8628(200024)97:4<271::AID-AJMG1277>3.0.CO;2-O. PubMed DOI
Franco D., Campione M. The role of Pitx2 during cardiac development: Linking left-right signaling and congenital heart diseases. Trends Cardiovasc. Med. 2003;13:157–163. doi: 10.1016/S1050-1738(03)00039-2. PubMed DOI
Campione M., Acosta L., Martínez S., Icardo J.M., Aránega A., Franco D. Pitx2 and cardiac development: A molecular link between left/right signaling and congenital heart disease. Cold Spring Harb. Symp. Quant. Biol. 2002;67:89–95. doi: 10.1101/sqb.2002.67.89. PubMed DOI
Paige S.L., Plonowska K., Xu A., Wu S.M. Molecular regulation of cardiomyocyte differentiation. Circ. Res. 2015;116:341–353. doi: 10.1161/CIRCRESAHA.116.302752. PubMed DOI PMC
Meyers E.N., Martin G.R. Differences in left-right axis pathways in mouse and chick: Functions of FGF8 and SHH. Science. 1999;285:403–406. doi: 10.1126/science.285.5426.403. PubMed DOI
Schlueter J., Brand T. Left/right assymetrical development of the proepicardiu. J. Dev. Biol. 2013;1:126–140. doi: 10.3390/jdb1020126. DOI
Lopez-Sanchez C., Climent V., Schoenwolf G.C., Alvarez I.S., Garcia-Martinez V. Induction of cardiogenesis by Hensen's node and fibroblast growth factors. Cell Tissue Res. 2002;309:237–249. doi: 10.1007/s00441-002-0567-2. PubMed DOI
Andrée B., Duprez D., Vorbusch B., Arnold H.H., Brand T. BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech. Dev. 1998;70:119–131. doi: 10.1016/S0925-4773(97)00186-X. PubMed DOI
Ladd A.N., Yatskievych T.A., Antin P.B. Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins. Dev. Biol. 1998;204:407–419. doi: 10.1006/dbio.1998.9094. PubMed DOI
Srivastava D. HAND proteins: Molecular mediators of cardiac development and congenital heart disease. Trends Cardiovasc. Med. 1999;9:11–18. doi: 10.1016/S1050-1738(98)00033-4. PubMed DOI
Schlesinger J., Schueler M., Grunert M., Fischer J.J., Zhang Q., Krueger T., Lange M., Tönjes M., Dunkel I., Sperling S.R. The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet. 2011;7:e1001313. doi: 10.1371/journal.pgen.1001313. PubMed DOI PMC
Ieda M., Fu J.D., Delgado-Olguin P., Vedantham V., Hayashi Y., Bruneau B.G., Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–386. doi: 10.1016/j.cell.2010.07.002. PubMed DOI PMC
Fu J.D., Stone N.R., Liu L., Spencer C.I., Qian L., Hayashi Y., Delgado-Olguin P., Ding S., Bruneau B.G., Srivastava D. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep. 2013;1:235–247. doi: 10.1016/j.stemcr.2013.07.005. PubMed DOI PMC
Srivastava D. Making or breaking the heart: From lineage determination to morphogenesis. Cell. 2006;126:1037–1048. doi: 10.1016/j.cell.2006.09.003. PubMed DOI
Baldini A., Fulcoli F.G., Illingworth E. Tbx1: Transcriptional and Developmental Functions. Curr. Top. Dev. Biol. 2017;122:223–243. PubMed
Greulich F., Rudat C., Kispert A. Mechanisms of T-box gene function in the developing heart. Cardiovasc. Res. 2011;91:212–222. doi: 10.1093/cvr/cvr112. PubMed DOI
Mori A.D., Bruneau B.G. TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr. Opin. Cardiol. 2004;19:211–215. doi: 10.1097/00001573-200405000-00004. PubMed DOI
Steimle J.D., Moskowitz I.P. TBX5: A Key Regulator of Heart Development. Curr. Top. Dev. Biol. 2017;122:195–221. PubMed PMC
Christoffels V.M., Keijser A.G., Houweling A.C., Clout D.E., Moorman A.F. Patterning the embryonic heart: Identification of five mouse Iroquois homeobox genes in the developing heart. Dev. Biol. 2000;224:263–274. doi: 10.1006/dbio.2000.9801. PubMed DOI
Houweling A.C., Dildrop R., Peters T., Mummenhoff J., Moorman A.F., Rüther U., Christoffels V.M. Gene and cluster-specific expression of the Iroquois family members during mouse development. Mech. Dev. 2001;107:169–174. doi: 10.1016/S0925-4773(01)00451-8. PubMed DOI
Bruneau B.G., Bao Z.Z., Fatkin D., Xavier-Neto J., Georgakopoulos D., Maguire C.T., Berul C.I., Kass D.A., Kuroski-de Bold M.L., de Bold A.J., et al. Cardiomyopathy in Irx4-deficient mice is preceded by abnormal ventricular gene expression. Mol. Cell. Biol. 2001;21:1730–1736. doi: 10.1128/MCB.21.5.1730-1736.2001. PubMed DOI PMC
Kim K.H., Rosen A., Bruneau B.G., Hui C.C., Backx P.H. Iroquois homeodomain transcription factors in heart development and function. Circ. Res. 2012;110:1513–1524. doi: 10.1161/CIRCRESAHA.112.265041. PubMed DOI
Ryan A.K., Blumberg B., Rodríguez-Esteban C., Yonei-Tamura S., Tamura K., Tsukui T., de la Peña J., Sabbagh W., Greenwald J., Choe S., et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature. 1998;394:545–551. PubMed
Logan M., Pagán-Westphal S.M., Smith D.M., Paganessi L., Tabin C.T. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell. 1998;94:307–317. doi: 10.1016/S0092-8674(00)81474-9. PubMed DOI
Piedra M.E., Icardo J.M., Albajar M., Rodriguez-Rey J.C., Ros M.A. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell. 1998;94:319–324. doi: 10.1016/S0092-8674(00)81475-0. PubMed DOI
Campione M., Steinbeisser H., Schweickert A., Deissler K., van Bebber F., Lowe L.A., Nowotschin S., Viebahn C., Haffter P., Kuehn M.R., et al. The homeobox gene Pitx2: Mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development. 1999;126:1225–1234. PubMed
Scott M.P., Tamkun J.W., Hartzell I.G.W. The structure and function of the homeodomain. Biochem. Biophys. Acta. 1989;989:25–48. doi: 10.1016/0304-419X(89)90033-4. PubMed DOI
Gage P.J., Suh H., Camper S.A. The bicoid-related Pitx gene family in development. Mamm. Genome. 1999;10:197–200. doi: 10.1007/s003359900970. PubMed DOI
Gehring W.J., Qian Y.Q., Billeter M., Furukubo-Tokunaga K., Schier A.F., Resendez-Perez D., Affolter M., Otting G., Wüthrich K. Homeodo- main-DNA recognition. Cell. 1994;78:211–223. doi: 10.1016/0092-8674(94)90292-5. PubMed DOI
Gage P.J., Suh H., Camper S.A. Dosage requirement of Pitx2 for development of multiple organs. Development. 1999;126:4643–4651. PubMed
Lanctot C., Lamolet B., Drouin J. The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development. 1997;124:2807–2817. PubMed
Logan M., Tabin C.J. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science. 1999;283:1736–1739. doi: 10.1126/science.283.5408.1736. PubMed DOI
Szeto D.P., Rodriguez-Esteban C., Ryan A.K., O’Connell S.M., Liu F., Kioussi C., Gleiberman A.S., Izpisua-Belmonte J.C., Rosenfeld M.G. Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev. 1999;13:484–494. doi: 10.1101/gad.13.4.484. PubMed DOI PMC
Kioussi C., Briata P., Baek S.H., Rose D.W., Hamblet N.S., Herman T., Ohgi K.A., Lin C., Gleiberman A., Wang J., et al. Identification of a Wnt/Dvl/beta-Catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002;111:673–985. doi: 10.1016/S0092-8674(02)01084-X. PubMed DOI
Kioussi C., Briata P., Baek S.H., Wynshaw-Boris A., Rose D.W., Rosenfeld M.G. Pitx genes during cardiovascular development. Cold Spring Harb. Symp. Quant. Biol. 2002;67:81–87. doi: 10.1101/sqb.2002.67.81. PubMed DOI
Kitamura K., Miura H., Miyagawa-Tomita S., Yanazawa M., Katoh-Fukui Y., Suzuki R., Ohuchi H., Suehiro A., Motegi Y., Nakahara Y., et al. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development. 1999;126:5749–5758. PubMed
Kitamura K., Miura H., Yanazawa M., Miyashita T., Kato K. Expression patterns of Brx1 (Rieg gene), Sonic hedgehog, Nkx2.2, Dlx1 and Arx during zona limitans intrathalamica and embryonic ventral lateral geniculate nuclear formation. Mech. Dev. 1997;67:83–96. doi: 10.1016/S0925-4773(97)00110-X. PubMed DOI
Lu M.F., Pressman C., Dyer R., Johnson R.L., Martin J.F. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature. 1999;401:276–278. PubMed
Muccielli M.L., Martinez S., Pattyn A., Goridis C., Brunet J.F. Otlx2, an Otx-related homeobox gene expressed in the pituitary gland and in a restricted pattern in the forebrain. Mol. Cell. Neurosci. 1996;8:258–271. doi: 10.1006/mcne.1996.0062. PubMed DOI
Qiu H.Y., Guo C., Cheng X.W., Huang Y., Xiong Z.Q., Ding Y.Q. Pitx3-CreER mice showing restricted Cre expression in developing ocular lens and skeletal muscles. Genesis. 2008;46:324–328. doi: 10.1002/dvg.20399. PubMed DOI
Smidt M.P., Smits S.M., Bouwmeester H., Hamers F.P., van der Linden A.J., Hellemons A.J., Graw J., Burbach J.P. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development. 2004;131:1145–1155. doi: 10.1242/dev.01022. PubMed DOI
Smidt M.P., van Schaick H.S., Lanctot C., Tremblay J.J., Cox J.J., van der Kleij A.A., Wolterink G., Drouin J., Burbach J.P. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc. Natl. Acad. Sci. USA. 1997;94:13305–13310. doi: 10.1073/pnas.94.24.13305. PubMed DOI PMC
Gage P.J., Camper S.A. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum. Mol. Genet. 1997;6:457–464. doi: 10.1093/hmg/6.3.457. PubMed DOI
Arakawa H., Nakamura T., Zhadanov A.B., Fidanza V., Yano T., Bullrich F., Shimizu M., Blechman J., Mazo A., Canaani E., et al. Identification and characterization of the ARP1 gene, a target for the human acute leukemia ALL1 gene. Proc. Natl. Acad. Sci. USA. 1998;95:4573–4578. doi: 10.1073/pnas.95.8.4573. PubMed DOI PMC
Cox C.J., Espinoza H.M., McWilliams B., Chappell K., Morton L., Hjalt T.A., Semina E.V., Amendt B.A. Differential regulation of gene expression by PITX2 isoforms. J. Biol. Chem. 2002;277:25001–25010. doi: 10.1074/jbc.M201737200. PubMed DOI
Semina E.V., Reiter R., Leysens N.J., Alward W.L., Small K.W., Datson N.A., Siegel-Bartelt J., Bierke-Nelson D., Bitoun P., Zabel B.U., et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat. Genet. 1996;14:392–399. doi: 10.1038/ng1296-392. PubMed DOI
Shiratori H., Sakuma R., Watanabe M., Hashiguchi H., Mochida K., Sakai Y., Nishino J., Saijoh Y., Whitman M., Hamada H. Two-step regulation of left-right asymmetric expression of Pitx2: Initiation by nodal signaling and maintenance by Nkx2. Mol. Cell. 2001;7:137–149. doi: 10.1016/S1097-2765(01)00162-9. PubMed DOI
Yoshioka H., Meno C., Koshiba K., Sugihara M., Itoh H., Ishimaru Y., Inoue T., Ohuchi H., Semina E.V. Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell. 1998;94:299–305. doi: 10.1016/S0092-8674(00)81473-7. PubMed DOI
Semina E.V., Reiter R.S., Murray J.C. Isolation of a new homeobox gene belonging to the Pitx/Rieg family: Expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum. Mol. Genet. 1997;6:2109–2116. doi: 10.1093/hmg/6.12.2109. PubMed DOI
Amand T.R.S., Ra J., Zhang Y., Hu Y., Baber S., Qiu M., Chen Y. Cloning and expression pattern of chicken Pitx2: A new component in the SHH signalling pathway controlling embryonic heart looping. Biochem. Biophys. Res. Commun. 1998;247:100–105. doi: 10.1006/bbrc.1998.8740. PubMed DOI
Lin C.R., Kioussi C., O’Connell S., Briata P., Szeto D., Liu F., Izpisúa-Belmonte J.C., Resenfield M.G. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature. 1999;401:279–282. PubMed
Cunningham E.T., Jr., Eliott D., Miller N.R., Maumenee I.H., Green W.R. Familial Axenfeld-Rieger anormaly, atrial septal defect and sensorineural hearing loss: A possible new genetic syndrome. Arch. Ophthalmol. 1998;1666:78–82. PubMed
Mammi I., De Giorgio P., Clementi M., Tenconi R. Cardiovascular anomaly in Rieger syndrome: Heterogeneity or contiguity? Acta Ophthalmol. Scand. 1998;76:509–512. doi: 10.1034/j.1600-0420.1998.760424.x. PubMed DOI
Tsai J.C., Grajewski A.L. Cardiac valvular disease and Axenfeld-Rieger syndrome. Am. J. Ophthalmol. 1994;118:255–256. doi: 10.1016/S0002-9394(14)72910-1. PubMed DOI
Spéder P., Petzoldt A., Suzanne M., Noselli S. Strategies to establish left/right asymmetry in vertebrates and invertebrates. Curr. Opin. Genet. Dev. 2007;17:351–358. doi: 10.1016/j.gde.2007.05.008. PubMed DOI
Bakkers J., Verhoeven M.C., Abdelilah-Seyfried S. Shaping the zebrafish heart: From left-right axis specification to epithelial tissue morphogenesis. Dev. Biol. 2009;330:213–220. doi: 10.1016/j.ydbio.2009.04.011. PubMed DOI
Namigai E.K., Kenny N.J., Shimeld S.M. Right across the tree of life: The evolution of left-right asymmetry in the Bilateria. Genesis. 2014;52:458–470. doi: 10.1002/dvg.22748. PubMed DOI
Meno C., Ito Y., Saijoh Y., Matsuda Y., Tashiro K., Kuhara S., Hamada H. Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: Their distinct expression domains, chromosomal linkage and direct neutralizing activity in Xenopus embryos. Genes Cells. 1997;2:513–524. doi: 10.1046/j.1365-2443.1997.1400338.x. PubMed DOI
Meno C., Shimono A., Saijoh Y., Yashiro K., Mochida K., Ohishi S., Noji S., Kondoh H., Hamada H. lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell. 1998;94:287–297. doi: 10.1016/S0092-8674(00)81472-5. PubMed DOI
Oki S., Kitajima K., Marques S., Belo J.A., Yokoyama T., Hamada H., Meno C. Reversal of left-right asymmetry induced by aberrant Nodal signaling in the node of mouse embryos. Development. 2009;136:3917–3925. doi: 10.1242/dev.039305. PubMed DOI
Adachi H., Saijoh Y., Mochida K., Ohishi S., Hashiguchi H., Hirao A., Hamada H. Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes Dev. 1999;13:1589–1600. doi: 10.1101/gad.13.12.1589. PubMed DOI PMC
Soukup V., Yong L.W., Lu T.M., Huang S.W., Kozmik Z., Yu J.K. The Nodal signaling pathway controls left-right asymmetric development in amphioxus. EvoDevo. 2015;6:5. doi: 10.1186/2041-9139-6-5. PubMed DOI PMC
Fujinaga M., Lowe L.A., Kuehn M.R. Alpha (1)-Adrenergic stimulation perturbs the left-right asymmetric expression pattern of nodal during rat embryogenesis. Teratology. 2000;62:317–324. doi: 10.1002/1096-9926(200011)62:5<317::AID-TERA5>3.0.CO;2-L. PubMed DOI
Long S., Ahmad N., Rebagliati M. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development. 2003;130:2303–2316. doi: 10.1242/dev.00436. PubMed DOI
Kumar A., Lualdi M., Lewandoski M., Kuehn M.R. Broad mesodermal and endodermal deletion of Nodal at postgastrulation stages results solely in left/right axial defects. Dev. Dyn. 2008;237:3591–3601. doi: 10.1002/dvdy.21665. PubMed DOI PMC
Heymer J., Kuehn M., Rüther U. The expression pattern of nodal and lefty in the mouse mutant Ft suggests a function in the establishment of handedness. Mech. Dev. 1997;66:5–11. doi: 10.1016/S0925-4773(97)00084-1. PubMed DOI
Kawasumi A., Nakamura T., Iwai N., Yashiro K., Saijoh Y., Belo J.A., Shiratori H., Hamada H. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos. Dev. Biol. 2011;353:321–330. doi: 10.1016/j.ydbio.2011.03.009. PubMed DOI PMC
Tadjuidje E., Kofron M., Mir A., Wylie C., Heasman J., Cha S.W. Nodal signalling in Xenopus: The role of Xnr5 in left/right asymmetry and heart development. Open Biol. 2016;6:150187. doi: 10.1098/rsob.150187. PubMed DOI PMC
Vincent S.D., Norris D.P., Le Good J.A., Constam D.B., Robertson E.J. Asymmetric Nodal expression in the mouse is governed by the combinatorial activities of two distinct regulatory elements. Mech. Dev. 2004;121:1403–1415. doi: 10.1016/j.mod.2004.06.002. PubMed DOI
Gaio U., Schweickert A., Fischer A., Garratt A.N., Müller T., Ozcelik C., Lankes W., Strehle M., Britsch S., Blum M., et al. A role of the cryptic gene in the correct establishment of the left-right axis. Curr. Biol. 1999;9:1339–1342. doi: 10.1016/S0960-9822(00)80059-7. PubMed DOI
Hashimoto H., Rebagliati M., Ahmad N., Muraoka O., Kurokawa T., Hibi M., Suzuki T. The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development. 2004;131:1741–1753. doi: 10.1242/dev.01070. PubMed DOI
Rodríguez Esteban, C. Capdevila, J. Economides, A.N. Pascual, J. Ortiz, A. Izpisúa Belmonte, J.C The novel Cer-like protein Caronte mediates the establishment of embryonic left-right asymmetry. Nature. 1999;401:243–251. PubMed
Tsiairis C.D., McMahon A.P. An Hh-dependent pathway in lateral plate mesoderm enables the generation of left/right asymmetry. Curr. Biol. 2009;19:1912–1917. doi: 10.1016/j.cub.2009.09.057. PubMed DOI PMC
Inácio J.M., Marques S., Nakamura T., Shinohara K., Meno C., Hamada H., Belo J.A. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node. PLoS ONE. 2013;8:e60406. doi: 10.1371/journal.pone.0060406. PubMed DOI PMC
Larkins C.E., Long A.B., Caspary T. Defective Nodal and Cerl2 expression in the Arl13b(hnn) mutant node underlie its heterotaxia. Dev. Biol. 2012;367:15–24. doi: 10.1016/j.ydbio.2012.04.011. PubMed DOI
Marques S., Borges A.C., Silva A.C., Freitas S., Cordenonsi M., Belo J.A. The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes Dev. 2004;18:2342–2347. doi: 10.1101/gad.306504. PubMed DOI PMC
Nakamura T., Saito D., Kawasumi A., Shinohara K., Asai Y., Takaoka K., Dong F., Takamatsu A., Belo J.A., Mochizuki A., et al. Fluid flow and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA. Nat. Commun. 2012;3:1322. doi: 10.1038/ncomms2319. PubMed DOI
Patel K., Isaac A., Cooke J. Nodal signalling and the roles of the transcription factors SnR and Pitx2 in vertebrate left-right asymmetry. Curr. Biol. 1999;9:609–612. doi: 10.1016/S0960-9822(99)80267-X. PubMed DOI
Kitajima K., Oki S., Ohkawa Y., Sumi T., Meno C. Wnt signaling regulates left-right axis formation in the node of mouse embryos. Dev. Biol. 2013;380:222–232. doi: 10.1016/j.ydbio.2013.05.011. PubMed DOI
Supp D.M., Witte D.P., Potter S.S., Brueckner M. Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature. 1997;389:963–966. doi: 10.1038/40140. PubMed DOI PMC
Buceta J., Ibañes M., Rasskin-Gutman D., Okada Y., Hirokawa N., Izpisúa-Belmonte J.C. Nodal cilia dynamics and the specification of the left/right axis in early vertebrate embryo development. Biophys. J. 2005;89:2199–2209. doi: 10.1529/biophysj.105.063743. PubMed DOI PMC
Hjeij R., Lindstrand A., Francis R., Zariwala M.A., Liu X., Li Y., Damerla R., Dougherty G.W., Abouhamed M., Olbrich H., et al. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am. J. Hum. Genet. 2013;93:357–367. doi: 10.1016/j.ajhg.2013.06.009. PubMed DOI PMC
Burnicka-Turek O., Steimle J.D., Huang W., Felker L., Kamp A., Kweon J., Peterson M., Reeves R.H., Maslen C.L., Gruber P.J., et al. Cilia gene mutations cause atrioventricular septal defects by multiple mechanisms. Hum. Mol. Genet. 2016;25:3011–3028. doi: 10.1093/hmg/ddw155. PubMed DOI PMC
Hadjantonakis A.K., Pisano E., Papaioannou V.E. Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS ONE. 2008;3:e2511. doi: 10.1371/journal.pone.0002511. PubMed DOI PMC
Gros J., Feistel K., Viebahn C., Blum M., Tabin C.J. Cell movements at Hensen’s node establish left/right asymmetric gene expression in the chick. Science. 2009;324:941–944. doi: 10.1126/science.1172478. PubMed DOI PMC
Bisgrove B.W., Essner J.J., Yost H.J. Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development. 2000;127:3567–3579. PubMed
Bisgrove B.W., Yost H.J. Classification of left-right patterning defects in zebrafish, mice, and humans. Am. J. Med. Genet. 2001;101:315–323. doi: 10.1002/ajmg.1180. PubMed DOI
Branford W.W., Essner J.J., Yost H.J. Regulation of gut and heart left-right asymmetry by context-dependent interactions between xenopus lefty and BMP4 signaling. Dev. Biol. 2000;223:291–306. doi: 10.1006/dbio.2000.9739. PubMed DOI
Liu C., Liu W., Lu M.F., Brown N.A., Martin J.F. Regulation of left-right asymmetry by thresholds of Pitx2c activity. Development. 2001;128:2039–2048. PubMed
Dagle J.M., Sabel J.L., Littig J.L., Sutherland L.B., Kolker S.J., Weeks D.L. Pitx2c attenuation results in cardiac defects and abnormalities of intestinal orientation in developing Xenopus laevis. Dev. Biol. 2003;262:268–281. doi: 10.1016/S0012-1606(03)00389-0. PubMed DOI
Davis N.M., Kurpios N.A., Sun X., Gros J., Martin J.F., Tabin C.J. The chirality of gut rotation derives from left-right asymmetric changes in the architecture of the dorsal mesentery. Dev. Cell. 2008;15:134–145. doi: 10.1016/j.devcel.2008.05.001. PubMed DOI PMC
Essner J.J., Branford W.W., Zhang J., Yost H.J. Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development. 2000;127:1081–1093. PubMed
Guioli S., Lovell-Badge R. PITX2 controls asymmetric gonadal development in both sexes of the chick and can rescue the degeneration of the right ovary. Development. 2007;134:4199–4208. doi: 10.1242/dev.010249. PubMed DOI
Nowotschin S., Liao J., Gage P.J., Epstein J.A., Campione M., Morrow B.E. Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development. 2006;133:1565–1573. doi: 10.1242/dev.02309. PubMed DOI
Liu W., Selever J., Lu M.F., Martin J.F. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development. 2003;130:6375–6385. doi: 10.1242/dev.00849. PubMed DOI
Yu X., Amand T.R.S., Wang S., Li G., Zhang Y., Hu Y., Nguyen L., Qiu M., Chen Y. Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick. Development. 2001;128:1005–1101. PubMed
Chinchilla A., Daimi H., Lozano-Velasco E., Domínguez J.N., Caballero R., Delpón E., Tamargo J., Cinca J., Hove-Madsen L., Aránega A.E., et al. Pitx2 insufficiency leads to electrical and structural remodelling linked to arrhythmogenesis. Circ. Cardiovasc. Genet. 2011;4:269–279. doi: 10.1161/CIRCGENETICS.110.958116. PubMed DOI
Wang J., Klysik E., Sood S., Johnson R.L., Wehrens X.H., Martin J.F. Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemarker specification. Proc. Natl. Acad. Sci. USA. 2010;107:9753–9758. doi: 10.1073/pnas.0912585107. PubMed DOI PMC
Kirchhof P., Kahr P.C., Kaese S., Piccini I., Vokshi I., Scheld H.H., Rotering H., Fortmueller L., Laakmann S., Verheule S., et al. PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ. Cardiovasc. Genet. 2011;4:123–133. doi: 10.1161/CIRCGENETICS.110.958058. PubMed DOI
Boorman C.J., Shimeld S.M. The evolution of left-right asymmetry in chordates. Bioessays. 2002;24:1004–1011. doi: 10.1002/bies.10171. PubMed DOI
Schweickert A., Campione M., Steinbeisser H., Blum M. Pitx2 isoforms: Involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left-right asymmetry. Mech. Dev. 2000;90:41–51. doi: 10.1016/S0925-4773(99)00227-0. PubMed DOI
Linask K.K., Yu X., Chen Y., Han M.D. Directionality of heart looping: Effects of Pitx2c misexpression on flectin asymmetry and midline structures. Dev. Biol. 2002;246:407–417. doi: 10.1006/dbio.2002.0661. PubMed DOI
Blue G.M., Kirk E.P., Giannoulatou E., Sholler G.F., Dunwoodie S.L., Harvey R.P., Winlaw D.S. Advances in the Genetics of Congenital Heart Disease: A Clinician’s Guide. J. Am. Coll. Cardiol. 2017;69:859–870. doi: 10.1016/j.jacc.2016.11.060. PubMed DOI
Zaidi S., Brueckner M. Genetics and Genomics of Congenital Heart Disease. Circ. Res. 2017;120:923–940. doi: 10.1161/CIRCRESAHA.116.309140. PubMed DOI PMC
Moorman A., Webb S., Brown N.A., Lamers W., Anderson R.H. Development of the heart: (1) Formation of the cardiac chambers and arterial trunks. Heart. 2003;89:806–814. doi: 10.1136/heart.89.7.806. PubMed DOI PMC
Furtado M.B., Biben C., Shiratori H., Hamada H., Harvey R.P. Characterization of Pitx2c expression in the mouse heart using a reporter transgene. Dev. Dyn. 2011;240:195–203. doi: 10.1002/dvdy.22492. PubMed DOI
Mommersteeg M.T., Brown N.A., Prall O.W., de Gier-de Vries C., Harvey R.P., Moorman A.F., Christoffels V.M. Pitx2c and Nkx2–5 are required for the formation and identity of the pulmonary myocardium. Circ. Res. 2007;101:902–909. doi: 10.1161/CIRCRESAHA.107.161182. PubMed DOI
Mommersteeg M.T., Hoogaars W.M., Prall O.W., de Gier-de Vries C., Wiese C., Clout D.E., Papaioannou V.E., Brown N.A., Harvey R.P., Moorman A.F., et al. Molecular pathway for the localized formation of the sinoatrial node. Circ. Res. 2007;100:354–362. doi: 10.1161/01.RES.0000258019.74591.b3. PubMed DOI
Liu C., Liu W., Palie J., Lu M.F., Brown N.A., Martin J.F. Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. Development. 2002;129:5081–5091. PubMed
Ai D., Liu W., Ma L., Dong F., Lu M.F., Wang D., Verzi M.P., Cai C., Gage P.J., Evans S., et al. Pitx2 regulates cardiac left-right asymmetry by patterning second cardiac lineage-derived myocardium. Dev. Biol. 2006;296:437–449. doi: 10.1016/j.ydbio.2006.06.009. PubMed DOI PMC
Tessari A., Pietrobon M., Notte M., Cifelli G., Gage P.J., Schneider M.D., Lembi G., Campione M. Myocardial Pitx2 Differentially Regulates the Left Atrial Identity and Ventricular Asymmetric Remodeling Programs. Circ. Res. 2008;102:813–822. doi: 10.1161/CIRCRESAHA.107.163188. PubMed DOI
Tao Y., Zhang M., Li L., Bai Y., Zhou Y., Moon A.M., Kaminski H.J., Martin J.F. Pitx2, an atrial fibrillation predisposition gene, directly regulates ion transport and intercalated disc genes. Circ. Cardiovasc. Genet. 2014;7:23–32. doi: 10.1161/CIRCGENETICS.113.000259. PubMed DOI PMC
Ammirabile G., Tessari A., Pignataro V., Szumska D., Sardo F.S., Benes J., Jr., Balistreri M., Bhattacharya S., Sedmera D., Campione M. Pitx2 confers left morphological, molecular, and functional identity to the sinus venosus myocardium. Cardiovasc. Res. 2012;93:291–301. doi: 10.1093/cvr/cvr314. PubMed DOI PMC
Martin D.M., Probst F.J., Fox S.E., Schimmenti L.A., Semina E.V., Hefner M.A., Belmont J.W., Camper S.A. Exclusion of PITX2 mutations as a major cause of CHARGE association. Am. J. Med. Genet. 2002;111:27–30. doi: 10.1002/ajmg.10473. PubMed DOI
Muncke N., Niesler B., Roeth R., Schön K., Rüdiger H.J., Goldmuntz E., Goodship J., Rappold G. Mutational analysis of the PITX2 coding region revealed no common cause for transposition of the great arteries (dTGA) BMC Med. Genet. 2005;6:20. doi: 10.1186/1471-2350-6-20. PubMed DOI PMC
Zaidi S., Choi M., Wakimoto H., Ma L., Jiang J., Overton J.D., Romano-Adesman A., Bjornson R.D., Breitbart R.E., Brown K.K., et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498:220–223. doi: 10.1038/nature12141. PubMed DOI PMC
Yuan F., Zhao L., Wang J., Zhang W., Li X., Qiu X.B., Li R.G., Xu Y.J., Xu L., Qu X.K., et al. PITX2c loss-of-function mutations responsible for congenital atrial septal defects. Int. J. Med. Sci. 2013;10:1422–1429. doi: 10.7150/ijms.6809. PubMed DOI PMC
Wei D., Gong X.H., Qiu G., Wang J., Yang Y.Q. Novel PITX2c loss-of-function mutations associated with complex congenital heart disease. Int. J. Mol. Med. 2014;33:1201–1208. doi: 10.3892/ijmm.2014.1689. PubMed DOI
Wang J., Xin Y.F., Xu W.J., Liu Z.M., Qiu X.B., Qu X.K., Xu L., Li X., Yang Y.Q. Prevalence and spectrum of PITX2c mutations associated with congenital heart disease. DNA Cell Biol. 2013;32:708–716. doi: 10.1089/dna.2013.2185. PubMed DOI PMC
Sun Y.M., Wang J., Qiu X.B., Yuan F., Xu Y.J., Li R.G., Qu X.K., Huang R.T., Xue S., Yang Y.Q. PITX2 loss-of-function mutation contributes to tetralogy of Fallot. Gene. 2016;577:258–264. doi: 10.1016/j.gene.2015.12.001. PubMed DOI
Li Q., Pan H., Guan L., Su D., Ma X. CITED2 mutation links congenital heart defects to dysregulation of the cardiac gene VEGF and PITX2C expression. Biochem. Biophys. Res. Commun. 2012;423:895–899. doi: 10.1016/j.bbrc.2012.06.099. PubMed DOI
Zhao C.M., Peng L.Y., Li L., Liu X.Y., Wang J., Zhang X.L., Yuan F., Li R.G., Qiu X.B., Yang Y.Q. PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome. PLoS ONE. 2015;10:e0124409. doi: 10.1371/journal.pone.0124409. PubMed DOI PMC
Hirayama-Yamada K., Kamisago M., Akimoto K., Aotsuka H., Nakamura Y., Tomita H., Furutani M., Imamura S., Takao A., Nakazawa M., et al. Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am. J. Med. Genet. Part A. 2005;135:47–52. doi: 10.1002/ajmg.a.30684. PubMed DOI
Kirk E.P., Hyun C., Thomson P.C., Lai D., Castro M.L., Biben C., Buckley M.F., Martin I.C., Moran C., Harvey R.P. Quantitative trait loci modifying cardiac atrial septal morphology and risk of patent foramen ovale in the mouse. Circ. Res. 2006;98:651–658. doi: 10.1161/01.RES.0000209965.59312.aa. PubMed DOI
Posch M.G., Perrot A., Berger F., Ozcelik C. Molecular genetics of congenital atrial septal defects. Clin. Res. Cardiol. 2010;99:137–147. doi: 10.1007/s00392-009-0095-0. PubMed DOI PMC
Gebbia M., Ferrero G.B., Pilia G., Bassi M.T., Aylsworth A., Penman-Splitt M., Bird L.M., Bamforth J.S., Burn J., Schlessinger D., et al. X-linked situs abnormalities result from mutations in ZIC3. Nat. Genet. 1997;17:305–308. doi: 10.1038/ng1197-305. PubMed DOI
Benjamin E.J., Levy D., Vaziri S.M., D’Agostino R.B., Belanger A.J., Wolf P.A. Independent risk factors for atrial fibrillation in a population-based cohort: The Framingham Heart Study. JAMA. 1994;271:840–844. doi: 10.1001/jama.1994.03510350050036. PubMed DOI
Go A.S., Hylek E.M., Philips K.A., Chang Y., Henault L.E., Selby J.V. Prevalence of diagnosed atrial fibrillation in adults: National implications for rhythm management and stroke prevention: The AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285:2370–2375. doi: 10.1001/jama.285.18.2370. PubMed DOI
Krahn A.D., Manfreda J., Tate R.B., Mathewson F.A., Cuddy T.E. The natural history of atrial fibrillation: Incidence, risk factors and prognosis in the Manitoba Follow-Up Study. Am. J. Med. 1995;98:476–484. doi: 10.1016/S0002-9343(99)80348-9. PubMed DOI
Gudbjartsson D.F., Arnar D.O., Helgadottir A., Gretarsdottir S., Holm H., Sigurdsson A., Jonasdottir A., Baker A., Thorleifsson G., Kristjansson K., et al. Var-iants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353–357. doi: 10.1038/nature06007. PubMed DOI
Gudbjartsson D.F., Holm H., Gretarsdottir S., Thorleifsson G., Walters G.B., Thorgeirsson G., Gulcher J., Mathiesen E.B., Njølstad I., Nyrnes A., et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat. Genet. 2009;41:876–878. doi: 10.1038/ng.417. PubMed DOI PMC
Benjamin E.J., Rice K.M., Arking D.E., Pfeufer A., van Noord C., Smith A.V., Schnabel R.B., Bis J.C., Boerwinkle E., Sinner M.F., et al. Variants in ZFHX3 are associated with atrial fibrilla- tion in individuals of European ancestry. Nat. Genet. 2009;41:879–881. doi: 10.1038/ng.416. PubMed DOI PMC
Ellinor P.T., Lunetta K.L., Glazer N.L., Pfeufer A., Alonso A., Chung M.K., Sinner M.F., de Bakker P.I., Mueller M., Lubitz S.A., et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat. Genet. 2010;42:240–244. doi: 10.1038/ng.537. PubMed DOI PMC
Schnabel R.B., Kerr K.F., Lubitz S.A., Alkylbekova E.L., Marcus G.M., Sinner M.F., Magnani J.W., Wolf P.A., Deo R., Lloyd-Jones D.M., et al. Large-scale candidate gene analysis in whites and African Americans identifies IL6R polymorphism in relation to atrial fibrillation: The National Heart, Lung, and Blood Institute’s Candidate Gene Association Resource (CARe) project. Circ. Cardiovasc. Genet. 2011;4:557–564. doi: 10.1161/CIRCGENETICS.110.959197. PubMed DOI PMC
Kääb S., Darbar D., van Noord C., Dupuis J., Pfeufer A., Newton-Cheh C., Schnabel R., Makino S., Sinner M.F., Kannankeril P.J., et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur. Heart J. 2009;30:813–819. doi: 10.1093/eurheartj/ehn578. PubMed DOI PMC
Lubitz S.A., Lunetta K.L., Lin H., Arking D.E., Trompet S., Li G., Krijthe B.P., Chasman D.I., Barnard J., Kleber M.E., et al. Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. J. Am. Coll. Cardiol. 2014;63:1200–1210. doi: 10.1016/j.jacc.2013.12.015. PubMed DOI PMC
Zhang Y., Sun L., Zhang Y., Liang H., Li X., Cai R., Wang L., Du W., Zhang R., Li J., et al. Overexpression of microRNA-1 causes atrioventricular block in rodents. Int. J. Biol. Sci. 2013;9:455–462. doi: 10.7150/ijbs.4630. PubMed DOI PMC
Mahida S., Ellinor P.T. New advances in the genetic basis of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2012;23:1400–1406. doi: 10.1111/j.1540-8167.2012.02445.x. PubMed DOI PMC
Mahida S., Mills R.W., Tucker N.R., Simonson B., Macri V., Lemoine M.D., Das S., Milan D.J., Ellinor P.T. Overexpression of KCNN3 results in sudden cardiac death. Cardiovasc. Res. 2014;101:326–334. doi: 10.1093/cvr/cvt269. PubMed DOI PMC
Lozano-Velasco E., Hernández-Torres F., Daimi H., Serra S.A., Herraiz A., Hove-Madsen L., Aránega A., Franco D. Pitx2 impairs calcium handling in a dose-dependent manner by modulating Wnt signalling. Cardiovasc. Res. 2016;109:55–66. doi: 10.1093/cvr/cvv207. PubMed DOI
Huang Y., Wang C., Yao Y., Zuo X., Chen S., Xu C., Zhang H., Lu Q., Chang L., Wang F., et al. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation. PLoS Genet. 2015;11:e1005393. doi: 10.1371/journal.pgen.1005393. PubMed DOI PMC
Ma J.M., Yang F., Mahida S., Zhao L., Chen X., Zhang M.L., Sun Z., Yao Y., Zhang Y.X., Zheng G.Y., et al. TBX5 mutations contribute to early-onset atrial fibrillation in Chinese and Caucasians. Cardiovasc. Res. 2016;109:442–450. doi: 10.1093/cvr/cvw003. PubMed DOI PMC
Nadadur R.D., Broman M.T., Boukens B., Mazurek S.R., Yang X., van den Boogaard M., Bekeny J., Gadek M., Ward T., Zhang M., et al. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm. Sci. Transl. Med. 2016;8:354ra115. doi: 10.1126/scitranslmed.aaf4891. PubMed DOI PMC
Wang J., Bai Y., Li N., Ye W., Zhang M., Greene S.B., Tao Y., Chen Y., Wehrens X.H., Martin J.F. Pitx2-microRNA pathway that delimits sinoatrial node development and inhibits predisposition to atrial fibrillation. Proc. Natl. Acad. Sci. USA. 2014;111:9181–9186. doi: 10.1073/pnas.1405411111. PubMed DOI PMC
Xia M., Jin Q., Bendahhou S., He Y., Larroque M.M., Chen Y., Zhou Q., Yang Y., Liu Y., Liu B., et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem. Biophys. Res. Commun. 2005;332:1012–1019. doi: 10.1016/j.bbrc.2005.05.054. PubMed DOI
Chen Y.H., Xu S.J., Bendahhou S., Wang X.L., Wang Y., Xu W.Y., Jin H.W., Sun H., Su X.Y., Zhuang Q.N., et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299:251–254. doi: 10.1126/science.1077771. PubMed DOI
Aguirre L.A., Alonso M.E., Badía-Careaga C., Rollán I., Arias C., Fernández-Miñán A., López-Jiménez E., Aránega A., Gómez-Skarmeta J.L., Franco D., et al. Long-range regulatory interactions at the 4q25 atrial fibrillation risk locus involve PITX2c and ENPEP. BMC Biol. 2015;13:26. doi: 10.1186/s12915-015-0138-0. PubMed DOI PMC
Ye J., Tucker N.R., Weng L.C., Clauss S., Lubitz S.A., Ellinor P.T. A Functional Variant Associated with Atrial Fibrillation Regulates PITX2c Expression through TFAP2a. Am. J. Hum. Genet. 2016;99:1281–1291. doi: 10.1016/j.ajhg.2016.10.001. PubMed DOI PMC
Torrado M., Franco D., Lozano-Velasco E., Hernández-Torres F., Calviño R., Aldama G., Centeno A., Castro-Beiras A., Mikhailov A. A MicroRNA-Transcription Factor Blueprint for Early Atrial Arrhythmogenic Remodeling. BioMed Res. Int. 2015;2015:263151. doi: 10.1155/2015/263151. PubMed DOI PMC
Syeda F., Holmes A.P., Yu T.Y., Tull S., Kuhlmann S.M., Pavlovic D., Betney D., Riley G., Kucera J., Jousset F., et al. Pitx2 modulates atrial membrane potential and reduced PITX2 potentiates the anti-arrhythmic effects of socium-channel blockers. J. Am. Coll. Cardiol. 2016;68:1881–1894. doi: 10.1016/j.jacc.2016.07.766. PubMed DOI PMC
Sun Y., Yang Y.-Q., Gong X.Q., Wang X.-H., Li R.-G., Tan H.-W., Liu X., Fang W.-Y., Bai D. Novel germline GJA5/connexin40 mutations associated with the lone atrial fibrillation impair gap junctional intercellular communication. Hum. Mutat. 2013;34:603–609. PubMed
Pérez-Hernández M., Matamoros M., Barana A., Amorós I., Gómez R., Núñez M., Sacristán S., Pinto A., Fernández-Avilés F., Tamargo J., et al. Pitx2c increases in atrial myocites from chronic atrial fibrillation patients enhancing IKs and devreasin ICa, L. Cardiovasc. Res. 2016;109:431–441. doi: 10.1093/cvr/cvv280. PubMed DOI
Girmatsion Z., Biliczki P., Bonauer A., Wimmer-Greinecker G., Scherer M., Moritz A., Bukowska A., Goette A., Nattel S., Hohnloser S.H., et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm. 2009;6:1802–1809. doi: 10.1016/j.hrthm.2009.08.035. PubMed DOI
Cooley N., Cowley M.J., Lin R.C., Marasco S., Wong C., Kaye D.M., Dart A.M., Woodcock E.A. Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease. Physiol. Genom. 2012;44:211–219. doi: 10.1152/physiolgenomics.00111.2011. PubMed DOI
Scridon A., Fouilloux-Meugnier E., Loizon E., Rome S., Julien C., Barrès C., Chevalier P. Long-standing arterial hypertension is associated with Pitx2 down-regulation in a rat model of spontaneous atrial tachyarrhythmias. Europace. 2015;17:160–165. doi: 10.1093/europace/euu139. PubMed DOI
Fakhro K.A., Choi M., Ware S.M., Belmont J.W., Towbin J.A., Lifton R.P., Khokha M.K., Brueckner M. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc. Natl. Acad. Sci. USA. 2011;108:2915–2920. doi: 10.1073/pnas.1019645108. PubMed DOI PMC
Franco D., Chinchilla A., Daimi H., Dominguez J.N., Aránega A. Modulation of conductive elements by Pitx2 and their impact on atrial arrhythmogenesis. Cardiovasc. Res. 2011;91:223–231. doi: 10.1093/cvr/cvr078. PubMed DOI
Franco D., Chinchilla A., Aránega A.E. Transgenic insights linking pitx2 and atrial arrhythmias. Front. Physiol. 2012;3:206. doi: 10.3389/fphys.2012.00206. PubMed DOI PMC
Franco D., Christoffels V.M., Campione M. Homeobox transcription factor Pitx2: The rise of an asymmetry gene in cardiogenesis and arrhythmogenesis. Trends Cardiovasc. Med. 2014;24:23–31. doi: 10.1016/j.tcm.2013.06.001. PubMed DOI