Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LO 1506
Czech Ministry of Education,Youth and Sports - International
PubMed
29368273
DOI
10.1007/s00285-018-1209-y
PII: 10.1007/s00285-018-1209-y
Knihovny.cz E-zdroje
- Klíčová slova
- Bernoulli equation, Darcy flow, Dynamic contrast-enhanced computed tomography, Liver perfusion, Porous media, Transport equation,
- MeSH
- analýza metodou konečných prvků MeSH
- biologické modely MeSH
- jaterní oběh * fyziologie MeSH
- játra krevní zásobení diagnostické zobrazování MeSH
- kontrastní látky farmakokinetika MeSH
- lidé MeSH
- matematické pojmy MeSH
- počítačová rentgenová tomografie statistika a číselné údaje MeSH
- počítačová simulace MeSH
- poréznost MeSH
- vylepšení rentgenového snímku metody MeSH
- zobrazování trojrozměrné statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kontrastní látky MeSH
The paper deals with modeling the liver perfusion intended to improve quantitative analysis of the tissue scans provided by the contrast-enhanced computed tomography (CT). For this purpose, we developed a model of dynamic transport of the contrast fluid through the hierarchies of the perfusion trees. Conceptually, computed time-space distributions of the so-called tissue density can be compared with the measured data obtained from CT; such a modeling feedback can be used for model parameter identification. The blood flow is characterized at several scales for which different models are used. Flows in upper hierarchies represented by larger branching vessels are described using simple 1D models based on the Bernoulli equation extended by correction terms to respect the local pressure losses. To describe flows in smaller vessels and in the tissue parenchyma, we propose a 3D continuum model of porous medium defined in terms of hierarchically matched compartments characterized by hydraulic permeabilities. The 1D models corresponding to the portal and hepatic veins are coupled with the 3D model through point sources, or sinks. The contrast fluid saturation is governed by transport equations adapted for the 1D and 3D flow models. The complex perfusion model has been implemented using the finite element and finite volume methods. We report numerical examples computed for anatomically relevant geometries of the liver organ and of the principal vascular trees. The simulated tissue density corresponding to the CT examination output reflects a pathology modeled as a localized permeability deficiency.
Zobrazit více v PubMed
J Math Biol. 2007 Sep;55(3):389-411 PubMed
Biomech Model Mechanobiol. 2014 Apr;13(2):363-78 PubMed
J Biomech. 1998 May;31(5):401-9 PubMed
Ann Biomed Eng. 2016 Jan;44(1):139-53 PubMed
J Math Biol. 2010 Jan;60(1):75-94 PubMed
IEEE Trans Med Imaging. 2010 Mar;29(3):699-707 PubMed
J Theor Biol. 2014 May 7;348:33-46 PubMed
In Vivo. 2015 May-Jun;29(3):327-40 PubMed
Biomech Model Mechanobiol. 2010 Aug;9(4):435-50 PubMed
J Anat. 2014 Apr;224(4):509-17 PubMed
Med Biol Eng Comput. 2013 May;51(5):557-70 PubMed
J Cereb Blood Flow Metab. 2009 Aug;29(8):1429-43 PubMed
Med Image Anal. 2012 Oct;16(7):1397-414 PubMed
J Biomech Eng. 2010 Nov;132(11):111011 PubMed
Int J Numer Method Biomed Eng. 2013 Feb;29(2):217-32 PubMed
Clin Sci (Lond). 2000 Dec;99(6):517-25 PubMed
Neuroimage. 2006 Aug 15;32(2):643-53 PubMed
J Biomech Eng. 2016 May;138(5):051007 PubMed
Biomech Model Mechanobiol. 2015 Jun;14(3):515-36 PubMed
J Biomech Eng. 2012 Jan;134(1):011003 PubMed
Int J Biomed Imaging. 2011;2011:467563 PubMed
Int J Comput Assist Radiol Surg. 2016 Oct;11(10):1803-19 PubMed
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):50-7 PubMed
Bull Math Biol. 2010 Aug;72(6):1464-91 PubMed
Int J Hepatol. 2012;2012:357687 PubMed