The Role of miR-126 in Critical Limb Ischemia Treatment Using Adipose-Derived Stem Cell Therapeutic Factor Concentrate and Extracellular Matrix Microparticles

. 2018 Jan 26 ; 24 () : 511-522. [epub] 20180126

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29371587

BACKGROUND Paracrine factors secreted by adipose-derived stem cells can be captured, fractionated, and concentrated to produce therapeutic factor concentrate (TFC). The present study examined whether TFC effects could be enhanced by combining TFC with a biological matrix to provide sustained release of factors in the target region. MATERIAL AND METHODS Unilateral hind limb ischemia was induced in rabbits. Ischemic limbs were injected with either placebo control, TFC, micronized small intestinal submucosa tissue (SIS), or TFC absorbed to SIS. Blood flow in both limbs was assessed with laser Doppler perfusion imaging. Tissues harvested at Day 48 were assessed immunohistochemically for vessel density; in situ hybridization and quantitative real-time PCR were employed to determine miR-126 expression. RESULTS LDP ratios were significantly elevated, compared to placebo control, on day 28 in all treatment groups (p=0.0816, p=0.0543, p=0.0639, for groups 2-4, respectively) and on day 36 in the TFC group (p=0.0866). This effect correlated with capillary density in the SIS and TFC+SIS groups (p=0.0093 and p=0.0054, respectively, compared to placebo). A correlation was observed between miR-126 levels and LDP levels at 48 days in SIS and TFC+SIS groups. CONCLUSIONS A single bolus administration of TFC and SIS had early, transient effects on reperfusion and promotion of ischemia repair. The effects were not additive. We also discovered that TFC modulated miR-126 levels that were expressed in cell types other than endothelial cells. These data suggested that TFC, alone or in combination with SIS, may be a potent therapy for patients with CLI that are at risk of amputation.

Zobrazit více v PubMed

Traktuev DO, Merfeld-Clauss S, Li J, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102(1):77–85. PubMed

Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) Cytotherapy. 2013;15(6):641–48. PubMed PMC

Miranville A, Heeschen C, Sengenes C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110(3):349–55. PubMed

Moon MH, Kim SY, Kim YJ, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem. 2006;17(5–6):279–90. PubMed

Nakagami H, Maeda K, Morishita R, et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol. 2005;25(12):2542–47. PubMed

Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63. PubMed

Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–98. PubMed

Bura A, Planat-Benard V, Bourin P, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16(2):245–57. PubMed

Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84. PubMed

Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94(5):678–85. PubMed

Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54. PubMed PMC

Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204–19. PubMed PMC

Prochazka V, Jurcikova J, Lassak O, et al. Therapeutic potential of adipose-derived therapeutic factor concentrate for treating critical limb ischemia. Cell Transplant. 2016;25(9):1623–33. PubMed

Bissell MJ, Aggeler J. Dynamic reciprocity: How do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res. 1987;249:251–62. PubMed

Ori A, Wilkinson MC, Fernig DG. The heparanome and regulation of cell function: Structures, functions and challenges. Front Biosci. 2008;13:4309–38. PubMed

Lau EK, Paavola CD, Johnson Z, et al. Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: Implications for structure and function in vivo. J Biol Chem. 2004;279(21):22294–305. PubMed

Sepuru KM, Nagarajan B, Desai UR, Rajarathnam K. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions. J Biol Chem. 2016;291(39):20539–50. PubMed PMC

Hodde J, Janis A, Ernst D, et al. Effects of sterilization on an extracellular matrix scaffold: Part I. Composition and matrix architecture. J Mater Sci Mater Med. 2007;18(4):537–43. PubMed

Qiang B, Lim SY, Lekas M, et al. Perlecan heparan sulfate proteoglycan is a critical determinant of angiogenesis in response to mouse hind-limb ischemia. Can J Cardiol. 2014;30(11):1444–51. PubMed

Chang J, DeLillo N, Jr, Khan M, Nacinovich MR. Review of small intestine submucosa extracellular matrix technology in multiple difficult-to-treat wound types. Wounds. 2013;25(5):113–20. PubMed

O’Donnell TF, Jr, Lau J. A systematic review of randomized controlled trials of wound dressings for chronic venous ulcer. J Vasc Surg. 2006;44(5):1118–25. PubMed

Hiles M, Hodde J. Tissue engineering a clinically useful extracellular matrix biomaterial. Int Urogynecol J Pelvic Floor Dysfunct. 2006;17(Suppl 1):S39–43. PubMed

Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002;8(2):295–308. PubMed

Hodde J. Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J Surg. 2006;76(12):1096–100. PubMed

Hodde J, Hiles M. Constructive soft tissue remodelling with a biologic extracellular matrix graft: Overview and review of the clinical literature. Acta Chir Belg. 2007;107(6):641–47. PubMed

Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8(1):11–24. PubMed

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. PubMed

Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet. 2008;9(2):102–14. PubMed

Fish JE. A primer on the role of microRNAs in endothelial biology and vascular disease. Semin Nephrol. 2012;32(2):167–75. PubMed

Caporali A, Emanueli C. MicroRNA regulation in angiogenesis. Vascul Pharmacol. 2011;55(4):79–86. PubMed

Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71. PubMed PMC

Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun. 2009;386(4):549–53. PubMed PMC

van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med. 2009;13(8A):1577–85. PubMed PMC

van Solingen C, de Boer HC, Bijkerk R, et al. MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1(+)/Lin (−) progenitor cells in ischaemia. Cardiovasc Res. 2011;92(3):449–55. PubMed

Kartha RV, Subramanian S. MicroRNAs in cardiovascular diseases: Biology and potential clinical applications. J Cardiovasc Transl Res. 2010;3(3):256–70. PubMed

Badylak SF, Lantz GC, Coffey A, Geddes LA. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res. 1989;47(1):74–80. PubMed

Jorgensen S, Baker A, Moller S, Nielsen BS. Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods. 2010;52(4):375–81. PubMed

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. PubMed

Kovanic P, Huber MB. The Economics of Information – Mathematical Gnostics for Data Analysis. 2003. www.math-gnostics.com.

Kovanic POT, Grabic R, Rieder M. Gnostic Analysis: A novel approach for univariate and multivariate data analysis. applications to experimental data from monitoring and research. In: Nagib C R-HC, Sylvain F, Rabin Raut ZH, editors. 9th World Multi-Conference on Systemics, Cybernetics and Informatics WMSCI 2005. Orlando, Florida, USA: IIIS Copyright Manager, 14269 Lord Barclay Dr., Orlando, Fl. 32837, USA; 2005. pp. 289–64.

Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14. PubMed PMC

Amann B, Luedemann C, Ratei R, et al. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009;18(3):371–80. PubMed

Benoit E, O’Donnell TF, Patel AN. Safety and efficacy of autologous cell therapy in critical limb ischemia: A systematic review. Cell Transplant. 2013;22(3):545–62. PubMed

Procházka V, Gumulec J, Jalůvka F, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19(11):1413–24. PubMed PMC

Mostow EN, Haraway GD, Dalsing M, et al. OASIS Venus Ulcer Study Group. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg. 2005;41(5):837–43. PubMed

Strieter RM, Kunkel SL, Elner VM, et al. Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol. 1992;141(6):1279–84. PubMed PMC

Boon RA, Dimmeler S. MicroRNA-126 in atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(7):e15–16. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Current Status of Cell-Based Therapy in Patients with Critical Limb Ischemia

. 2020 Nov 26 ; 21 (23) : . [epub] 20201126

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...