The Role of miR-126 in Critical Limb Ischemia Treatment Using Adipose-Derived Stem Cell Therapeutic Factor Concentrate and Extracellular Matrix Microparticles
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
29371587
PubMed Central
PMC5795917
DOI
10.12659/msm.905442
PII: 905442
Knihovny.cz E-zdroje
- MeSH
- extracelulární matrix metabolismus MeSH
- ischemie genetika patologie terapie MeSH
- kmenové buňky cytologie MeSH
- končetiny krevní zásobení patologie MeSH
- králíci MeSH
- kůže patologie MeSH
- laser doppler flowmetrie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- mikropartikule metabolismus MeSH
- modely nemocí na zvířatech MeSH
- perfuze MeSH
- regulace genové exprese MeSH
- reperfuzní poškození patologie terapie MeSH
- střevní sliznice fyziologie MeSH
- tenké střevo fyziologie MeSH
- transplantace kmenových buněk * MeSH
- tuková tkáň cytologie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikro RNA MeSH
BACKGROUND Paracrine factors secreted by adipose-derived stem cells can be captured, fractionated, and concentrated to produce therapeutic factor concentrate (TFC). The present study examined whether TFC effects could be enhanced by combining TFC with a biological matrix to provide sustained release of factors in the target region. MATERIAL AND METHODS Unilateral hind limb ischemia was induced in rabbits. Ischemic limbs were injected with either placebo control, TFC, micronized small intestinal submucosa tissue (SIS), or TFC absorbed to SIS. Blood flow in both limbs was assessed with laser Doppler perfusion imaging. Tissues harvested at Day 48 were assessed immunohistochemically for vessel density; in situ hybridization and quantitative real-time PCR were employed to determine miR-126 expression. RESULTS LDP ratios were significantly elevated, compared to placebo control, on day 28 in all treatment groups (p=0.0816, p=0.0543, p=0.0639, for groups 2-4, respectively) and on day 36 in the TFC group (p=0.0866). This effect correlated with capillary density in the SIS and TFC+SIS groups (p=0.0093 and p=0.0054, respectively, compared to placebo). A correlation was observed between miR-126 levels and LDP levels at 48 days in SIS and TFC+SIS groups. CONCLUSIONS A single bolus administration of TFC and SIS had early, transient effects on reperfusion and promotion of ischemia repair. The effects were not additive. We also discovered that TFC modulated miR-126 levels that were expressed in cell types other than endothelial cells. These data suggested that TFC, alone or in combination with SIS, may be a potent therapy for patients with CLI that are at risk of amputation.
American Heart of Poland Inc Katowice Poland
Cook Biotech Inc West Lafayette IN USA
Department of Surgery University Hospital Ostrava Ostrava Czech Republic
Laboratoře AGEL a s Nový Jičín Czech Republic
MEDi CBTD Ostrava Czech Republic
NeuroFX LLC Indianapolis IN USA
Radiodiagnostic Institute University Hospital Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Traktuev DO, Merfeld-Clauss S, Li J, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102(1):77–85. PubMed
Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) Cytotherapy. 2013;15(6):641–48. PubMed PMC
Miranville A, Heeschen C, Sengenes C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110(3):349–55. PubMed
Moon MH, Kim SY, Kim YJ, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem. 2006;17(5–6):279–90. PubMed
Nakagami H, Maeda K, Morishita R, et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol. 2005;25(12):2542–47. PubMed
Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63. PubMed
Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–98. PubMed
Bura A, Planat-Benard V, Bourin P, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16(2):245–57. PubMed
Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84. PubMed
Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94(5):678–85. PubMed
Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54. PubMed PMC
Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204–19. PubMed PMC
Prochazka V, Jurcikova J, Lassak O, et al. Therapeutic potential of adipose-derived therapeutic factor concentrate for treating critical limb ischemia. Cell Transplant. 2016;25(9):1623–33. PubMed
Bissell MJ, Aggeler J. Dynamic reciprocity: How do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res. 1987;249:251–62. PubMed
Ori A, Wilkinson MC, Fernig DG. The heparanome and regulation of cell function: Structures, functions and challenges. Front Biosci. 2008;13:4309–38. PubMed
Lau EK, Paavola CD, Johnson Z, et al. Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: Implications for structure and function in vivo. J Biol Chem. 2004;279(21):22294–305. PubMed
Sepuru KM, Nagarajan B, Desai UR, Rajarathnam K. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions. J Biol Chem. 2016;291(39):20539–50. PubMed PMC
Hodde J, Janis A, Ernst D, et al. Effects of sterilization on an extracellular matrix scaffold: Part I. Composition and matrix architecture. J Mater Sci Mater Med. 2007;18(4):537–43. PubMed
Qiang B, Lim SY, Lekas M, et al. Perlecan heparan sulfate proteoglycan is a critical determinant of angiogenesis in response to mouse hind-limb ischemia. Can J Cardiol. 2014;30(11):1444–51. PubMed
Chang J, DeLillo N, Jr, Khan M, Nacinovich MR. Review of small intestine submucosa extracellular matrix technology in multiple difficult-to-treat wound types. Wounds. 2013;25(5):113–20. PubMed
O’Donnell TF, Jr, Lau J. A systematic review of randomized controlled trials of wound dressings for chronic venous ulcer. J Vasc Surg. 2006;44(5):1118–25. PubMed
Hiles M, Hodde J. Tissue engineering a clinically useful extracellular matrix biomaterial. Int Urogynecol J Pelvic Floor Dysfunct. 2006;17(Suppl 1):S39–43. PubMed
Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002;8(2):295–308. PubMed
Hodde J. Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J Surg. 2006;76(12):1096–100. PubMed
Hodde J, Hiles M. Constructive soft tissue remodelling with a biologic extracellular matrix graft: Overview and review of the clinical literature. Acta Chir Belg. 2007;107(6):641–47. PubMed
Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8(1):11–24. PubMed
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. PubMed
Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet. 2008;9(2):102–14. PubMed
Fish JE. A primer on the role of microRNAs in endothelial biology and vascular disease. Semin Nephrol. 2012;32(2):167–75. PubMed
Caporali A, Emanueli C. MicroRNA regulation in angiogenesis. Vascul Pharmacol. 2011;55(4):79–86. PubMed
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71. PubMed PMC
Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun. 2009;386(4):549–53. PubMed PMC
van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med. 2009;13(8A):1577–85. PubMed PMC
van Solingen C, de Boer HC, Bijkerk R, et al. MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1(+)/Lin (−) progenitor cells in ischaemia. Cardiovasc Res. 2011;92(3):449–55. PubMed
Kartha RV, Subramanian S. MicroRNAs in cardiovascular diseases: Biology and potential clinical applications. J Cardiovasc Transl Res. 2010;3(3):256–70. PubMed
Badylak SF, Lantz GC, Coffey A, Geddes LA. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res. 1989;47(1):74–80. PubMed
Jorgensen S, Baker A, Moller S, Nielsen BS. Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods. 2010;52(4):375–81. PubMed
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. PubMed
Kovanic P, Huber MB. The Economics of Information – Mathematical Gnostics for Data Analysis. 2003. www.math-gnostics.com.
Kovanic POT, Grabic R, Rieder M. Gnostic Analysis: A novel approach for univariate and multivariate data analysis. applications to experimental data from monitoring and research. In: Nagib C R-HC, Sylvain F, Rabin Raut ZH, editors. 9th World Multi-Conference on Systemics, Cybernetics and Informatics WMSCI 2005. Orlando, Florida, USA: IIIS Copyright Manager, 14269 Lord Barclay Dr., Orlando, Fl. 32837, USA; 2005. pp. 289–64.
Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14. PubMed PMC
Amann B, Luedemann C, Ratei R, et al. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009;18(3):371–80. PubMed
Benoit E, O’Donnell TF, Patel AN. Safety and efficacy of autologous cell therapy in critical limb ischemia: A systematic review. Cell Transplant. 2013;22(3):545–62. PubMed
Procházka V, Gumulec J, Jalůvka F, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19(11):1413–24. PubMed PMC
Mostow EN, Haraway GD, Dalsing M, et al. OASIS Venus Ulcer Study Group. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg. 2005;41(5):837–43. PubMed
Strieter RM, Kunkel SL, Elner VM, et al. Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol. 1992;141(6):1279–84. PubMed PMC
Boon RA, Dimmeler S. MicroRNA-126 in atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(7):e15–16. PubMed
Current Status of Cell-Based Therapy in Patients with Critical Limb Ischemia