Current Status of Cell-Based Therapy in Patients with Critical Limb Ischemia

. 2020 Nov 26 ; 21 (23) : . [epub] 20201126

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33256237

(1) Background: The treatment of peripheral arterial disease (PAD) is focused on improving perfusion and oxygenation in the affected limb. Standard revascularization methods include bypass surgery, endovascular interventional procedures, or hybrid revascularization. Cell-based therapy can be an alternative strategy for patients with no-option critical limb ischemia who are not eligible for endovascular or surgical procedures. (2) Aims: The aim of this narrative review was to provide an up-to-date critical overview of the knowledge and evidence-based medicine data on the position of cell therapy in the treatment of PAD. The current evidence on the cell-based therapy is summarized and future perspectives outlined, emphasizing the potential of exosomal cell-free approaches in patients with critical limb ischemia. (3) Methods: Cochrane and PubMed databases were searched for keywords "critical limb ischemia and cell therapy". In total, 589 papers were identified, 11 of which were reviews and 11 were meta-analyses. These were used as the primary source of information, using cross-referencing for identification of additional papers. (4) Results: Meta-analyses focusing on cell therapy in PAD treatment confirm significantly greater odds of limb salvage in the first year after the cell therapy administration. Reported odds ratio estimates of preventing amputation being mostly in the region 1.6-3, although with a prolonged observation period, it seems that the odds ratio can grow even further. The odds of wound healing were at least two times higher when compared with the standard conservative therapy. Secondary endpoints of the available meta-analyses are also included in this review. Improvement of perfusion and oxygenation parameters in the affected limb, pain regression, and claudication interval prolongation are discussed. (5) Conclusions: The available evidence-based medicine data show that this technique is safe, associated with minimum complications or adverse events, and effective.

Zobrazit více v PubMed

Frank U., Nikol S., Belch J., Boc V., Brodmann M., Carpentier P.H., Chraim A., Canning C., Dimakakos E., Gottsater A., et al. ESVM Guideline on peripheral arterial disease. Vasa. 2019;48(Suppl. 102):1–79. doi: 10.1024/0301-1526/a000834. PubMed DOI

Aboyans V., Ricco J.B., Bartelink M.E.L., Bjorck M., Brodmann M., Cohnert T., Collet J.P., Czerny M., De Carlo M., Debus S., et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS) Eur. Heart J. 2018;39:763–816. PubMed

Management of Peripheral Arterial Disease (PAD) TransAtlantic Inter-Society Consensus (TASC) Section D: Chronic critical limb ischaemia. Eur. J. Vasc. Endovasc. Surg. 2000;19(Suppl. A):144–243. doi: 10.1016/S1078-5884(00)80028-3. PubMed DOI

De Caridi G., Massara M., Stilo F., Spinelli F., Grande R., Butrico L., de Franciscis S., Serra R. Effectiveness of prostaglandin E1 in patients with mixed arterial and venous ulcers of the lower limbs. Int. Wound J. 2016;13:625–629. doi: 10.1111/iwj.12334. PubMed DOI PMC

Mirenda F., La Spada M., Baccellieri D., Stilo F., Benedetto F., Spinelli F. Iloprost infusion in diabetic patients with peripheral arterial occlusive disease and foot ulcers. Chir. Ital. Milano Roma. 2005;6:731–735. PubMed

Nehler M.R., Peyton B.D. Is revascularization and limb salvage always the treatment for critical limb ischemia? J. Cardiovasc. Surg. 2004;45:177–184. doi: 10.1067/mva.2003.142. PubMed DOI

Watelet J., Soury P., Menard J.F., Plissonnier D., Peillon C., Lestrat J.P., Testart J. Femoropopliteal bypass: In situ or reversed vein grafts? Ten-year results of a randomized prospective study. Ann. Vasc. Surg. 1997;11:510–519. doi: 10.1007/s100169900083. PubMed DOI

Norgren L., Hiatt W.R., Dormandy J.A., Nehler M.R., Harris K.A., Fowkes F.G., Bell K., Caporusso J., Durand-Zaleski I., Komori K., et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II) J. Vasc. Surg. 2007;45:S5–S67. doi: 10.1016/j.jvs.2006.12.037. PubMed DOI

Sprengers R.W., Moll F.L., Verhaar M.C. Stem cell therapy in PAD. Eur. J. Vasc. Endovasc. Surg. 2010;39(Suppl. 1):S38–S43. doi: 10.1016/j.ejvs.2009.12.001. PubMed DOI

Fadini G.P., Agostini C., Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis. 2010;209:10–17. doi: 10.1016/j.atherosclerosis.2009.08.033. PubMed DOI

Asahara T., Murohara T., Sullivan A., Silver M., van der Zee R., Li T., Witzenbichler B., Schatteman G., Isner J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–967. doi: 10.1126/science.275.5302.964. PubMed DOI

Tateishi-Yuyama E., Matsubara H., Murohara T., Ikeda U., Shintani S., Masaki H., Amano K., Kishimoto Y., Yoshimoto K., Akashi H., et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial. Lancet. 2002;360:427–435. doi: 10.1016/S0140-6736(02)09670-8. PubMed DOI

Lin C.J., Lan Y.M., Ou M.Q., Ji L.Q., Lin S.D. Expression of miR-217 and HIF-1alpha/VEGF pathway in patients with diabetic foot ulcer and its effect on angiogenesis of diabetic foot ulcer rats. J. Endocrinol. Investig. 2019;42:1307–1317. doi: 10.1007/s40618-019-01053-2. PubMed DOI

Andrews E.M., Tsai S.Y., Johnson S.C., Farrer J.R., Wagner J.P., Kopen G.C., Kartje G.L. Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp. Neurol. 2008;211:588–592. doi: 10.1016/j.expneurol.2008.02.027. PubMed DOI PMC

Liu F.P., Dong J.J., Sun S.J., Gao W.Y., Zhang Z.W., Zhou X.J., Yang L., Zhao J.Y., Yao J.M., Liu M., et al. Autologous bone marrow stem cell transplantation in critical limb ischemia: A meta-analysis of randomized controlled trials. Chin. Med. J. 2012;125:4296–4300. PubMed

Teraa M., Sprengers R.W., van der Graaf Y., Peters C.E., Moll F.L., Verhaar M.C. Autologous Bone Marrow-Derived Cell Therapy in Patients With Critical Limb Ischemia: A Meta-Analysis of Randomized Controlled Clinical Trials. Ann. Surg. 2013;258:922–929. doi: 10.1097/SLA.0b013e3182854cf1. PubMed DOI

Benoit E., O’Donnell T.F., Patel A.N. Safety and efficacy of autologous cell therapy in critical limb ischemia: A systematic review. Cell Transplant. 2013;22:545–562. doi: 10.3727/096368912X636777. PubMed DOI

Wang Z.X., Li D., Cao J.X., Liu Y.S., Wang M., Zhang X.Y., Li J.L., Wang H.B., Liu J.L., Xu B.L. Efficacy of autologous bone marrow mononuclear cell therapy in patients with peripheral arterial disease. J. Atheroscler. Thromb. 2014;21:1183–1196. doi: 10.5551/jat.23374. PubMed DOI

Liu Y., Xu Y., Fang F., Zhang J., Guo L., Weng Z. Therapeutic Efficacy of Stem Cell-based Therapy in Peripheral Arterial Disease: A Meta-Analysis. PLoS ONE. 2015;10:e0125032. doi: 10.1371/journal.pone.0125032. PubMed DOI PMC

Liew A., Bhattacharya V., Shaw J., Stansby G. Cell Therapy for Critical Limb Ischemia: A Meta-Analysis of Randomized Controlled Trials. Angiology. 2016;67:444–455. doi: 10.1177/0003319715595172. PubMed DOI

Ai M., Yan C.F., Xia F.C., Zhou S.L., He J., Li C.P. Safety and efficacy of cell-based therapy on critical limb ischemia: A meta-analysis. Cytotherapy. 2016;18:712–724. doi: 10.1016/j.jcyt.2016.02.009. PubMed DOI

Rigato M., Monami M., Fadini G.P. Autologous Cell Therapy for Peripheral Arterial Disease. Systematic Review and Meta-Analysis of Randomized, Nonrandomized and Noncintrolled Studies. Circ. Res. 2017;120:1326–1340. doi: 10.1161/CIRCRESAHA.116.309045. PubMed DOI

Pan T., Wei Z., Fang Y., Dong Z., Fu W. Therapeutic efficacy of CD34+ cell-involved mononuclera cell therapy for no-option critical limb ischemia: A meta-analysis of randomized controlled clinical trials. Vasc. Med. 2018;23:219–231. doi: 10.1177/1358863X17752556. PubMed DOI

Xie B., Luo H., Zhang Y., Wang Q., Zhou C., Xu D. Autologous Stem Cell Therapy in Critical Limb Ischemia: A Meta-Analysis of Randomized Controlled trials. Stem Cells Int. 2018:7528464. doi: 10.1155/2018/7528464. PubMed DOI PMC

Tongers J., Roncalli J.G., Losordo D.W. Role of endothelial progenitor cells during ischemia-induced vasculogenesis and collateral formation. Microvasc. Res. 2010;79:200–206. doi: 10.1016/j.mvr.2010.01.012. PubMed DOI PMC

Urbich C., Dimmeler S. Endothelial progenitor cells functional characterization. Trends Cardiovasc. Med. 2004;14:318–322. doi: 10.1016/j.tcm.2004.10.001. PubMed DOI

Hristov M., Erl W., Weber P.C. Endothelial progenitor cells: Mobilization, differentiation, and homing. Arterioscler. Thromb. Vasc. Biol. 2003;23:1185–1189. doi: 10.1161/01.ATV.0000073832.49290.B5. PubMed DOI

Cheng M., Guan X., Li H., Cui X., Zhang X., Li X., Jing X., Wu H., Avsar E. Shear stress regulates late EPC differentiation via mechanosensitive molecule-mediated cytoskeletal rearrangement. PLoS ONE. 2013;8:e67675. doi: 10.1371/journal.pone.0067675. PubMed DOI PMC

Saigawa T., Kato K., Ozawa T., Toba K., Makiyama Y., Minagawa S., Hashimoto S., Furukawa T., Nakamura Y., Hanawa H., et al. Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ. J. 2004;68:1189–1193. doi: 10.1253/circj.68.1189. PubMed DOI

Klepanec A., Mistrik M., Altaner C., Valachovicova M., Olejarova I., Slysko R., Balazs T., Urlandova T., Hladikova D., Liska B., et al. No difference in intra-arterial and intramuscular delivery of autologous bone marrow cells in patients with advanced critical limb ischemia. Cell Transplant. 2012;21:1909–1918. doi: 10.3727/096368912X636948. PubMed DOI

Walter D.H., Krankenberg H., Balzer J.O., Kalka C., Baumgartner I., Schluter M., Tonn T., Seeger F., Dimmeler S., Lindhoff-Last E., et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: A randomized-start, placebo-controlled pilot trial (PROVASA) Circ. Cardiovasc. Interv. 2011;4:26–37. doi: 10.1161/CIRCINTERVENTIONS.110.958348. PubMed DOI

Kawamoto A., Iwasaki H., Kusano K., Murayama T., Oyamada A., Silver M., Hulbert C., Gavin M., Hanley A., Ma H., et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation. 2006;114:2163–2169. doi: 10.1161/CIRCULATIONAHA.106.644518. PubMed DOI

Losordo D.W., Schatz R.A., White C.J., Udelson J.E., Veereshwarayya V., Durgin M., Poh K.K., Weinstein R., Kearney M., Chaudhry M., et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: A phase I/IIa double-blind, randomized controlled trial. Circulation. 2007;115:3165–3172. doi: 10.1161/CIRCULATIONAHA.106.687376. PubMed DOI

Peichev M., Naiyer A.J., Pereira D., Zhu Z., Lane W.J., Williams M., Oz M.C., Hicklin D.J., Witte L., Moore M.A., et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95:952–958. doi: 10.1182/blood.V95.3.952.003k27_952_958. PubMed DOI

Stamm C., Westphal B., Kleine H.D., Petzsch M., Kittner C., Klinge H., Schumichen C., Nienaber C.A., Freund M., Steinhoff G. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003;361:45–46. doi: 10.1016/S0140-6736(03)12110-1. PubMed DOI

Bartunek J., Vanderheyden M., Vandekerckhove B., Mansour S., De Bruyne B., De Bondt P., Van Haute I., Lootens N., Heyndrickx G., Wijns W. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: Feasibility and safety. Circulation. 2005;112(Suppl. 9):178–183. PubMed

Kocher A.A., Schuster M.D., Szabolcs M.J., Takuma S., Burkhoff D., Wang J., Homma S., Edwards N.M., Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 2001;7:430–436. doi: 10.1038/86498. PubMed DOI

Friedenstein A.J., Petrakova K.V., Kurolesova A.I., Frolova G.P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–247. doi: 10.1097/00007890-196803000-00009. PubMed DOI

Ribatti D., Nico B., Crivellato E. The role of pericytes in angiogenesis. Int. J. Dev. Biol. 2011;55:261–268. doi: 10.1387/ijdb.103167dr. PubMed DOI

Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. PubMed DOI

Lu D., Chen B., Liang Z., Deng W., Jiang Y., Li S., Xu J., Wu Q., Zhang Z., Xie B., et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: A double-blind, randomized, controlled trial. Diabetes Res. Clin. Pract. 2011;92:26–36. doi: 10.1016/j.diabres.2010.12.010. PubMed DOI

Cobellis G., Maione C., Botti C., Coppola A., Silvestroni A., Lillo S., Schiavone V., Molinari A.M., Sica V. Beneficial effects of VEGF secreted from stromal cells in supporting endothelial cell functions: Therapeutic implications for critical limb ischemia. Cell Transplant. 2010;19:1425–1437. doi: 10.3727/096368910X509068. PubMed DOI

Altaner C., Altanerova V., Cihova M., Hunakova L., Kaiserova K., Klepanec A., Vulev I., Madaric J. Characterization of mesenchymal stem cells of “no-options” patients with critical limb ischemia treated by autologous bone marrow mononuclear cells. PLoS ONE. 2013;8:e73722. doi: 10.1371/journal.pone.0073722. PubMed DOI PMC

Kirana S., Stratmann B., Prante C., Prohaska W., Koerperich H., Lammers D., Gastens M.H., Quast T., Negrean M., Stirban O.A., et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int. J. Clin. Pract. 2012;66:384–393. doi: 10.1111/j.1742-1241.2011.02886.x. PubMed DOI

Krasnodembskaya A., Song Y., Fang X., Gupta N., Serikov V., Lee J.W., Matthay M.A. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28:2229–2238. doi: 10.1002/stem.544. PubMed DOI PMC

Prochazka V., Gumulec J., Chmelova J., Klement P., Klement G.L., Jonszta T., Czerny D., Krajca J. Autologous bone marrow stem cell transplantation in patients with end-stage chronical critical limb ischemia and diabetic foot. Vnitr. Lek. 2009;55:173–178. PubMed

Prochazka V., Gumulec J., Jaluvka F., Salounova D., Jonszta T., Czerny D., Krajca J., Urbanec R., Klement P., Martinek J., et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19:1413–1424. doi: 10.3727/096368910X514170. PubMed DOI PMC

Madaric J., Klepanec A., Mistrik M., Altaner C., Vulev I. Intra-arterial autologous bone marrow cell transplantation in a patient with upper-extremity critical limb ischemia. Cardiovasc. Interv. Radiol. 2013;36:545–548. doi: 10.1007/s00270-012-0415-z. PubMed DOI

Zou H., Otani A., Oishi A., Yodoi Y., Kameda T., Kojima H., Yoshimura N. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice. Biochem. Biophys. Res. Commun. 2010;391:1268–1273. doi: 10.1016/j.bbrc.2009.12.057. PubMed DOI

Li Calzi S., Neu M.B., Shaw L.C., Kielczewski J.L., Moldovan N.I., Grant M.B. EPCs and pathological angiogenesis: When good cells go bad. Microvasc. Res. 2010;79:207–216. doi: 10.1016/j.mvr.2010.02.011. PubMed DOI PMC

Lyden D., Hattori K., Dias S., Costa C., Blaikie P., Butros L., Chadburn A., Heissig B., Marks W., Witte L., et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 2001;7:1194–1201. doi: 10.1038/nm1101-1194. PubMed DOI

Gao D., Nolan D., McDonnell K., Vahdat L., Benezra R., Altorki N., Mittal V. Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim. Biophys. Acta Rev. Cancer. 2009;1796:33–40. doi: 10.1016/j.bbcan.2009.05.001. PubMed DOI PMC

Wickersheim A., Kerber M., de Miguel L.S., Plate K.H., Machein M.R. Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int. J. Cancer. 2009;125:1771–1777. doi: 10.1002/ijc.24605. PubMed DOI

Prochazka V., Jurcikova J., Lassak O., Vitkova K., Pavliska L., Porubova L., Buszman P.P., Krauze A., Fernandez C., Jaluvka F., et al. Therapeutic Potential of Adipose-Derived Therapeutic Factor Concentrate for Treating Critical Limb Ischemia. Cell Transplant. 2016;25:1623–1633. doi: 10.3727/096368915X689767. PubMed DOI

Caplan A.I., Dennis J.E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 2006;98:1076–1084. doi: 10.1002/jcb.20886. PubMed DOI

Gnecchi M., Zhang Z., Ni A., Dzau V.J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 2008;103:1204–1219. doi: 10.1161/CIRCRESAHA.108.176826. PubMed DOI PMC

Kinnaird T., Stabile E., Burnett M.S., Lee C.W., Barr S., Fuchs S., Epstein S.E. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 2004;94:678–685. doi: 10.1161/01.RES.0000118601.37875.AC. PubMed DOI

Murphy M.B., Moncivais K., Caplan A.I. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 2013;45:e54. doi: 10.1038/emm.2013.94. PubMed DOI PMC

Prochazka V., Jurcikova J., Vitkova K., Pavliska L., Porubova L., Lassak O., Buszman P., Fernandez C.A., Jaluvka F., Spackova I., et al. The Role of miR-126 in Critical Limb Ischemia Treatment Using Adipose-Derived Stem Cell Therapeutic Factor Concentrate and Extracellular Matrix Microparticles. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018;24:511–522. doi: 10.12659/MSM.905442. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Signaling pathways in cutaneous wound healing

. 2022 ; 13 () : 1030851. [epub] 20221125

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace