Asymmetric Choreography in Pairs of Orthogonal Rotors
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
29399655
PubMed Central
PMC5793037
DOI
10.1021/acsomega.7b01580
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
An asymmetric mechanism for correlated motion occurring in noninteracting pairs of adjacent orthogonal 1,4-bis(carboxyethynyl)bicyclo[1.1.1]pentane (BCP) rotators 1 in the solid state is unraveled and shown to play an important role in understanding the dynamics in the crystalline rotor, Bu4N+[1-]·H2O. Single crystal X-ray diffraction and calculation of rotor-rotor interaction energies combined with variable-temperature, variable-field 1H spin-lattice relaxation experiments led to the identification and microscopic rationalization of two distinct relaxation processes.
Institut de Ciència de Materials de Barcelona Campus de la UAB 08193 Bellaterra Spain
Laboratoire de Physique des Solides CNRS and Université de Paris Sud 91405 Orsay France
Laboratoire MOLTECH Anjou CNRS UMR 6200 Université d'Angers 49045 Angers France
See more in PubMed
Lemouchi C.; Mézière C.; Zorina L.; Simonov S.; Rodríguez-Fortea A.; Canadell E.; Wzietek P.; Auban-Senzier P.; Pasquier C.; Giamarchi T.; Garcia-Garibay M. A.; Batail P. Design and evaluation of a crystalline hybrid of molecular conductors and molecular rotors. J. Am. Chem. Soc. 2012, 134, 7880–7891. 10.1021/ja301484b. PubMed DOI
Kaleta J.; Nečas M.; Mazal C. 1,3-Diethynylbicyclo[1.1.1]pentane, a useful molecular building block. Eur. J. Org. Chem. 2012, 4783–4796. 10.1002/ejoc.201200351. DOI
Kaleta J.; Michl J.; Mazal C. T-shaped molecular building blocks by combined bridgehead and bridge substitution on bicyclo[1.1.1]pentanes. J. Org. Chem. 2010, 75, 2350–2356. 10.1021/jo100169b. PubMed DOI
Kaleta J.; Janoušek Z.; Nečas M.; Mazal C. Molecular rods combining o-carborane and bicyclo[1.1.1]pentane cages: an insertion of the triple bond located next to a highly strained cage. Organometallics 2015, 34, 967–972. 10.1021/acs.organomet.5b00002. DOI
Cipolloni M.; Kaleta J.; Mašát M.; Dron P. I.; Shen Y.; Zhao K.; Rogers C. T.; Shoemaker R. K.; Michl J. Time-resolved fluorescence anisotropy of bicyclo[1.1.1]pentane/tolane-based molecular rods included in tris(o-phenylenedioxy)cyclotriphosphazene (TPP). J. Phys. Chem. C 2015, 119, 8805–8820. 10.1021/acs.jpcc.5b01960. PubMed DOI PMC
Iwamura H.; Mislow K. Stereochemical consequences of dynamic gearing. Acc. Chem. Res. 1988, 21, 175–182. 10.1021/ar00148a007. DOI
Nakamura M.; Kishimoto K.; Kobori Y.; Abe T.; Yoza K.; Kobayashi K. Self-assembled molecular gear: a 4:1 complex of Rh(III)Cl tetraarylporphyrin and tetra(p-pyridyl)cavitand. J. Am. Chem. Soc. 2016, 138, 12564–12577. 10.1021/jacs.6b07284. PubMed DOI
Jiang X.; O’Brien Z. J.; Yang S.; Lai L. H.; Buenaflor J.; Tan C.; Khan S.; Houk K. N.; Garcia-Garibay M. A. Crystal fluidity reflected by fast rotational motion at the core, branches, and Peripheral aromatic groups of a dendrimeric molecular rotor. J. Am. Chem. Soc. 2016, 138, 4650–4656. 10.1021/jacs.6b01398. PubMed DOI PMC
Sanada K.; Ube H.; Shionoya M. Rotational control of a dirhodium-centered supramolecular four-gear system by ligand exchange. J. Am. Chem. Soc. 2016, 138, 2945–2948. 10.1021/jacs.5b13515. PubMed DOI
Frantz D. K.; Linden A.; Baldridge K. K.; Siegel J. S. Molecular spur gears comprising triptycene rotators and bibenzimidazole-based stators. J. Am. Chem. Soc. 2012, 134, 1528–1535. 10.1021/ja2063346. PubMed DOI
Lemouchi C.; Iliopoulos K.; Zorina L.; Simonov S.; Wzietek P.; Cauchy T.; Rodríguez-Fortea A.; Canadell E.; Kaleta J.; Michl J.; Gindre D.; Chrysos M.; Batail P. Crystalline Arrays of Pairs of Molecular Rotors: Correlated Motion, Rotational Barriers, and Space Inversion-symmetry Breaking due to Conformational Mutations. J. Am. Chem. Soc. 2013, 135, 9366–9376. 10.1021/ja4044517. PubMed DOI
Bastien G.; Lemouchi C.; Allain M.; Wzietek P.; Rodríguez-Fortea A.; Canadell E.; Iliopoulos K.; Gindre D.; Chrysos M.; Batail P. Changing gears to neutral in a polymorph of one-dimensional arrays of cogwheel-like pairs of molecular rotor. CrystEngComm 2014, 16, 1241–1244. 10.1039/c3ce42054j. DOI
Kaleta J.; Michl J.; Mézière C.; Simonov S.; Zorina L.; Wzietek P.; Rodríguez-Fortea A.; Canadell E.; Batail P. Gearing motion in cogwheels pairs of molecular rotors: weak-coupling limit. CrystEngComm 2015, 17, 7829–7834. 10.1039/c5ce01372k. DOI
Domingos S. R.; Cnossen A.; Buma W. J.; Browne W. R.; Feringa B. L.; Schnell M. Cold snapshot of a molecular rotary motor captured by high-resolution rotational spectroscopy. Angew. Chem., Int. Ed. 2017, 56, 11209–11212. 10.1002/anie.201704221. PubMed DOI PMC
Steigleder E.; Shima T.; Lang G. M.; Ehnbom A.; Hampel F.; Gladysz J. A. Partially shielded Fe(CO)3 rotors: syntheses, structures, and dynamic properties of complexes with doubly trans spanning diphosphines, trans-[Fe(CO)3(PhP((CH2)n)2]PPh). Organometallics 2017, 36, 2891–2901. 10.1021/acs.organomet.7b00330. DOI
Faulkner A.; van Leeuwen T.; Feringa B. L.; Wezenberg S. J. Allosteric regulation of the rotational speed in a light-driven molecular motor. J. Am. Chem. Soc. 2016, 138, 13597–13603. 10.1021/jacs.6b06467. PubMed DOI PMC
Abendroth J. M.; Bushuyev O. S.; Weiss P. S.; Barrett C. J. Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 2015, 9, 7746–7768. 10.1021/acsnano.5b03367. PubMed DOI
Erbas-Cakmak S.; Leigh D. A.; McTernan C. T.; Nussbaumer A. L. Artificial molecular machines. Chem. Rev. 2015, 115, 10081–10206. 10.1021/acs.chemrev.5b00146. PubMed DOI PMC
Vogelsberg C. S.; Garcia-Garibay M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 2012, 41, 1892–1910. 10.1039/c1cs15197e. PubMed DOI
Lemouchi C.; Vogelsberg C. S.; Zorina L.; Simonov S.; Batail P.; Brown S.; Garcia-Garibay M. A. Ultra-fast rotors for molecular machines and functional materials via halogen bonding: crystals of 1,4-bis(iodoethynyl)bicyclo[2.2.2]octane with distinct gigahertz rotation at two sites. J. Am. Chem. Soc. 2011, 133, 6371–6379. 10.1021/ja200503j. PubMed DOI
Lemouchi C.; Yamamoto H. M.; Kato R.; Simonov S.; Zorina L.; Rodríguez-Fortea A.; Canadell E.; Wzietek P.; Iliopoulos K.; Gindre D.; Chrysos M.; Batail P. Reversible control of crystalline rotors by squeezing their hydrogen bond cloud across a halogen bond-mediated phase transition. Cryst. Growth Des. 2014, 14, 3375–3383. 10.1021/cg5002978. DOI
Chlorinated Cubane-1,4-dicarboxylic Acids