Chlorinated Cubane-1,4-dicarboxylic Acids

. 2024 Aug 16 ; 89 (16) : 11100-11108. [epub] 20230201

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36724049

Herein, we report radical chlorination of cubane-1,4-dicarboxylic acid leading preferentially to one monochlorinated cubane dicarboxylate (ca. 70%) that is accompanied by four dichlorinated derivatives (ca. 20% in total). The exact positions of the chlorine atoms have been confirmed by X-ray diffraction of the corresponding single crystals. The acidity constants of all dicarboxylic acids in water were determined by capillary electrophoresis (3.17 ± 0.04 and 4.09 ± 0.05 for monochlorinated and ca. 2.71 ± 0.05 and 3.75 ± 0.05 for dichlorinated cubanes). All chlorinated derivatives as well as the parent diacid showed high thermal stability (decomposition above 250 °C) as documented by differential scanning calorimetry. The probable reaction pathways leading to individual isomers were proposed, and the energies of individual transition states and intermediates were obtained using density functional theory calculations (B3LYP-D3BJ/6-311+G(d,p)). The relative strain energies for all newly prepared derivatives as well as for hypothetical hexahalogenated (fluorinated, chlorinated, brominated, and iodinated) derivatives of cubane-1,4-dicarboxylic acids were predicted using wavefunction theory methods. The hexafluorinated derivative was identified as the most strained compound (57.5 kcal/mol), and the relative strain decreased as the size of halogen atoms increased (23.7 for hexachloro, 16.7 for hexabromo, and 4.0 kcal/mol for the hexaiodo derivative).

Zobrazit více v PubMed

Martin H.-D.; Urbanek T.; Pfohler P.; Walsh R. The Pyrolysis of Cubane; an Example of a Thermally Induced Hot Molecule Reaction. J. Chem. Soc., Chem. Commun. 1985, 964–965. 10.1039/C39850000964. DOI

Griffin G. W.; Marchand A. P. Synthesis and Chemistry of Cubanes. Chem. Rev. 1989, 89, 997–1010. 10.1021/cr00095a003. DOI

Biegasiewicz K. F.; Griffiths J. R.; Savage P. G.; Tsanaktsidis J.; Priefer R. Cubane: 50 Years Later. Chem. Rev. 2015, 115, 6719–6745. 10.1021/cr500523x. PubMed DOI

Eaton P. A.; Cole T. W. Cubane. J. Am. Chem. Soc. 1964, 86, 3157–3158. 10.1021/ja01069a041. DOI

Fleischer E. B. X-Ray Structure Determination of Cubane. J. Am. Chem. Soc. 1964, 86, 3889–3890. 10.1021/ja01072a069. DOI

Eaton P. A. Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century. Angew. Chem., Int. Ed. 1992, 31, 1421–1436. 10.1002/anie.199214211. DOI

Reekie T. A.; Williams C. M.; Rendina L. M.; Kassiou M. Cubane in Medicinal Chemistry. J. Med. Chem. 2019, 62, 1078–1095. 10.1021/acs.jmedchem.8b00888. PubMed DOI

Auberson Y. P.; Brocklehurst P.; Furegati M.; Fessard T. C.; Koch G.; Decker A.; La Vecchia L.; Briard E. Improving Nonspecific Binding and Solubility: Bicycloalkyl Groups and Cubanes as para-Phenyl Bioisosteres. ChemMedChem 2017, 12, 590–598. 10.1002/cmdc.201700082. PubMed DOI

Tse E. G.; Houston S. D.; Williams C. G.; Savage P.; Rendina L. M.; Hallyburton I.; Anderson M.; Sharma R.; Walker G. S.; Obach R. S.; Todd M. I. Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials. J. Med. Chem. 2020, 63, 11585–11601. 10.1021/acs.jmedchem.0c00746. PubMed DOI

Zhang M. X.; Eaton P. E.; Gilardi R. Hepta- and Octanitrocubanes. Angew. Chem., Int. Ed. 2000, 39, 401–404. 10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P. PubMed DOI

Eaton P. E.; Zhang M.-X.; Gilardi R.; Gelber N.; Iyer S.; Surapaneni R. Octanitrocubane: A New Nitrocarbon. Propellants, Explos., Pyrotech. 2002, 27, 1.10.1002/1521-4087(200203)27:1<1::AID-PREP1>3.0.CO;2-6. DOI

Jelínková K.; Surmová H.; Matelová A.; Rouchal M.; Prucková Z.; Dastychová L.; Nečas M.; Vícha R. Cubane Arrives on the Cucurbituril Scene. Org. Lett. 2017, 19, 2698–2701. 10.1021/acs.orglett.7b01029. PubMed DOI

Huang H.-T.; Zhu L.; Ward M. D.; Wang T.; Chen B.; Chaloux B. L.; Wang Q.; Biswas A.; Gray J. L.; Kuei B.; Cody G. D.; Epshteyn A.; Crespi V. H.; Badding J. V.; Strobel T. A. Nanoarchitecture through Strained Molecules: Cubane-Derived Scaffolds and the Smallest Carbon Nanothreads. J. Am. Chem. Soc. 2020, 142, 17944–17955. 10.1021/jacs.9b12352. PubMed DOI

Collin D. E.; Jackman E. H.; Jouandon N.; Sun W.; Light M. E.; Harrowven D. C.; Linclau B. Decagram Synthesis of Dimethyl 1,4-Cubanedicarboxylate Using Continuous-Flow Photochemistry. Synthesis 2021, 53, 1307–1314. 10.1055/s-0040-1705964. DOI

Collin D. E.; Kovacic K.; Light M. E.; Linclau B. Synthesis of ortho-Functionalized 1,4-Cubanedicarboxylate Derivatives through Photochemical Chlorocarbonylation. Org. Lett. 2021, 23, 5164–5169. 10.1021/acs.orglett.1c01702. PubMed DOI

Nagasawa S.; Hosaka M.; Iwabuchi Y. ortho-C–H Acetoxylation of Cubane Enabling Access to Cubane Analogues of Pharmaceutically Relevant Scaffolds. Org. Lett. 2021, 23, 8717–8721. 10.1021/acs.orglett.1c03144. PubMed DOI

Eremenko L. T.; Oreshko G. V.; Lagodzinskaya G. V. NMR Study on the Interaction of 1,4-Cubanedicarboxylic Acid and its Esters with Elemental Fluorine. The Synthesis of Dimethyl 2-Fluorocubane-1,4-dicarboxylate. Spectrochim. Acta, Part A 2001, 57, 1663–1672. 10.1016/S1386-1425(01)00399-7. PubMed DOI

Irngartinger H.; Strack S. Electron Density Distribution in a 1,2-Difluorinated Cubane Derivative. J. Am. Chem. Soc. 1998, 120, 5818–5819. 10.1021/ja980514m. DOI

Bliese M.; Gable R. W.; Fanning L.-A.; Lowe D. A.; Tsanaktsidis J. Indirect Monobromination of the Cubane Nucleus. The Synthesis of Dimethyl 2-Bromocubane- 1,4-dicarboxylate. Aust. J. Chem. 1998, 51, 593–598. 10.1071/C98028. DOI

Fokin A. A.; Lauensten O.; Gunchenko P. A.; Schreiner P. R. Halogenation of Cubane under Phase-Transfer Conditions: Single and Double C-H-Bond Substitution with Conservation of the Cage Structure. J. Am. Chem. Soc. 2001, 123, 1842–1847. 10.1021/ja0032677. PubMed DOI

Fokin A. A.; Schreiner P. R.; Berger R.; Robinson G. H.; Wei P.; Campana C. F. Pseudotetrahedral Polyhalocubanes: Synthesis, Structures, and Parity Violating Energy Differences. J. Am. Chem. Soc. 2006, 128, 5332–5333. 10.1021/ja060781p. PubMed DOI

Kaleta J.; Rončević I.; Císařová I.; Dračínský M.; Šolínová V.; Kašička V.; Michl J. Bridge-Chlorinated Bicyclo[1.1.1]pentane-1,3-dicarboxylic Acids. J. Org. Chem. 2019, 84, 2448–2461. 10.1021/acs.joc.8b02780. PubMed DOI

Le T. P.; Rončević I.; Dračínský M.; Císařová I.; Šolínová V.; Kašička V.; Kaleta J. Polyhalogenated Bicyclo[1.1.1]pentane-1,3-dicarboxylic Acids. J. Org. Chem. 2021, 86, 10303–10319. 10.1021/acs.joc.1c01020. PubMed DOI

Dračínský M.; Santos Hurtado C.; Masson E.; Kaleta J. Stuffed Pumpkins: Mechanochemical Synthesis of Host-Guest Complexes with Cucurbit[7]uril. Chem. Commun. 2021, 57, 2132–2135. 10.1039/D1CC00240F. PubMed DOI

Rodríguez-Fortea A.; Kaleta J.; Méziècre C.; Allain M.; Canadell E.; Wzietek P.; Michl J.; Batail P. Asymmetric Choreography in Pairs of Orthogonal Rotors. ACS Omega 2018, 3, 1293–1297. 10.1021/acsomega.7b01580. PubMed DOI PMC

Santos Hurtado C.; Bastien G.; Mašát M.; Štoček J. R.; Dračínský M.; Rončević I.; Císařová I.; Rogers C. T.; Kaleta J. Regular 2-D Arrays of Surface-Mounted Molecular Switches: Switching Monitored by UV-vis and NMR Spectroscopy. J. Am. Chem. Soc. 2020, 142, 9337–9351. 10.1021/jacs.0c01753. PubMed DOI

Perego J.; Bezuidenhout C. X.; Bracco S.; Piva S.; Prando G.; Aloisi C.; Carretta P.; Kaleta J.; Le T. P.; Sozzani P.; Daolio A.; Comotti A. Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metal-Organic Frameworks. Angew. Chem., Int. Ed. 2022, 62, e20221589310.1002/anie.202215893. PubMed DOI

Walling C. Some Aspects of the Chemistry of Alkoxy Radicals. Pure Appl. Chem. 1967, 15, 69–80. 10.1351/pac196715010069. DOI

Freeman P. K.; Ziebarth T. D. Radical Chlorination of Tetracyclo[3.3.0.02,7.04,6]octane and Tetracyclo[3.3.0.02,4.03,7]octane with tert-Butyl Hypochlorite. J. Org. Chem. 1976, 41, 949–952. 10.1021/jo00868a010. DOI

Wheeler E. S.; Houk N. K.; Schleyer V. R. P.; Allen D. W. A Hierarchy of Homodesmotic Reactions for Thermochemistry. J. Am. Chem. Soc. 2009, 131, 2547–2560. 10.1021/ja805843n. PubMed DOI PMC

Fan X.; Ju X. H.; Xia Q.; Xiao H. Strain Energies of Cubane Derivatives with Different Substituent Groups. J. Hazard. Mater. 2008, 151, 255–260. 10.1016/j.jhazmat.2007.05.075. PubMed DOI

Fan X.; Qiu L.; Ju X. Cage Strain in Nitro-Substituted 1,3,5,7-Tetraazacubanes. Struct. Chem. 2009, 20, 1039–1042. 10.1007/s11224-009-9505-1. DOI

Sugiyama M.; Akiyama M.; Yonezawa Y.; Komaguchi K.; Higashi M.; Nozaki K.; Okazoe T. Electron in a Cube: Synthesis and Characterization of a Perfluorocubane as an Electron Acceptor. Science 2022, 377, 756–759. 10.1126/science.abq0516. PubMed DOI

Ibrahim M. A. A.; Moussa N. A. M. Unconventional Type III Halogen···Halogen Interactions: A Quantum Mechanical Elucidation of σ-Hole···σ-Hole and Di-σ-Hole Interactions. ACS Omega 2020, 5, 21824–21835. 10.1021/acsomega.0c02887. PubMed DOI PMC

Sheldrick G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3–8. 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G. M. Crystal Structure Refinement With SHELXL. Acta Cryst. 2015, C71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Stephens P. J.; Devlin F. J.; Chabalowski C. F.; Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. 10.1021/j100096a001. DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI

Rončević I.; Bastien G.; Cvačka J.; Kaleta J.; Michl J. CB11H10– and Related Carborenes. Inorg. Chem. 2020, 59, 12453–12460. 10.1021/acs.inorgchem.0c01557. PubMed DOI

Bergner A.; Dolg M.; Küchle W.; Stoll H.; Preuß H. Ab initio Energy-Adjusted Pseudopotentials for Elements of Groups 13-17. Mol. Phys. 1993, 80, 1431–1441. 10.1080/00268979300103121. DOI

Marenich V. A.; Cramer J. C.; Truhlar G. D. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. 10.1021/jp810292n. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato X.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. J. A.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford CT, 2016.

Riplinger C.; Neese F. An Efficient and Near Linear Scaling Pair Natural Orbital Based Local Coupled Cluster Method. J. Chem. Phys. 2013, 138, 03410610.1063/1.4773581. PubMed DOI

Kendall R. A.; Dunning T. H.; Harrison R. J. Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI

Peterson K. A. Systematically Convergent Basis Sets with Relativistic Pseudopotentials. I. Correlation Consistent Basis Sets for the Post-d Group 13–15 Elements. J. Chem. Phys. 2003, 119, 11099–11112. 10.1063/1.1622923. DOI

Grimme S. Improved Second-Order Møller–Plesset Perturbation Theory by Separate Scaling of Parallel- and Antiparallel-Spin Pair Correlation Energies. J. Chem. Phys. 2003, 118, 9095–9102. 10.1063/1.1569242. DOI

Pavosevic F.; Pinski P.; Riplinger C.; Neese F.; Valeev E. F. SparseMaps-A Systematic Infrastructure for Reduced-Scaling Electronic Structure Methods. IV. Linear-Scaling Second-Order Explicitly Correlated Energy with Pair Natural Orbitals. J. Chem. Phys. 2016, 144, 144109.10.1063/1.4945444. PubMed DOI

Neese F.; Wennmohs F.; Becker U.; Riplinger C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108.10.1063/5.0004608. PubMed DOI

Yanai T.; Tew D. P.; Handy N. C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI

Miertus S.; Scrocco E.; Tomasi J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of AB initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117–129. 10.1016/0301-0104(81)85090-2. DOI

Miertus S.; Tomasi J. Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes. Chem. Phys. 1982, 65, 239–245. 10.1016/0301-0104(82)85072-6. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...