The role of transposable elements in functional evolution of amphioxus genome: the case of opsin gene family
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29410521
PubMed Central
PMC5802833
DOI
10.1038/s41598-018-20683-9
PII: 10.1038/s41598-018-20683-9
Knihovny.cz E-resources
- MeSH
- Gene Duplication MeSH
- Genome MeSH
- Lancelets genetics MeSH
- Evolution, Molecular * MeSH
- Opsins genetics MeSH
- Gene Expression Regulation MeSH
- DNA Transposable Elements genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Opsins MeSH
- DNA Transposable Elements MeSH
Transposable elements (TEs) are able to jump to new locations (transposition) in the genome, usually after replication. They constitute the so-called selfish or junk DNA and take over large proportions of some genomes. Due to their ability to move around they can change the DNA landscape of genomes and are therefore a rich source of innovation in genes and gene regulation. Surge of sequence data in the past years has significantly facilitated large scale comparative studies. Cephalochordates have been regarded as a useful proxy to ancestral chordate condition partially due to the comparatively slow evolutionary rate at morphological and genomic level. In this study, we used opsin gene family from three Branchiostoma species as a window into cephalochordate genome evolution. We compared opsin complements in terms of family size, gene structure and sequence allowing us to identify gene duplication and gene loss events. Furthermore, analysis of the opsin containing genomic loci showed that they are populated by TEs. In summary, we provide evidence of the way transposable elements may have contributed to the evolution of opsin gene family and to the shaping of cephalochordate genomes in general.
See more in PubMed
Lankenau, D. & Volff, J. N. Transposons and the Dynamic Genome. Springer-Verlag Berlin Heidelberg, (2009).
Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989;5:103–107. doi: 10.1016/0168-9525(89)90039-5. PubMed DOI
Curcio MJ, Derbyshire KM. The outs and ins of transposition: from mu to kangaroo. Nat. Rev. Mol. Cell Biol. 2003;4:865–877. doi: 10.1038/nrm1241. PubMed DOI
Wicker T, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–982. doi: 10.1038/nrg2165. PubMed DOI
McClintock B. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 1956;21:197–216. doi: 10.1101/SQB.1956.021.01.017. PubMed DOI
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. advance online publication; 10.1038/nrg.2016.139 (2016). PubMed PMC
Bourque G. Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr. Opin. Genet. Dev. 2009;19:607–612. doi: 10.1016/j.gde.2009.10.013. PubMed DOI
Feschotte C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 2008;9:397–405. doi: 10.1038/nrg2337. PubMed DOI PMC
Feschotte C. The contribution of transposable elements to the evolution of regulatory networks. Nat. Rev. Genet. 2008;9:397–405. doi: 10.1038/nrg2337. PubMed DOI PMC
McVean G. What drives recombination hotspots to repeat DNA in humans? Phil. Trans. R. Soc. B. 2010;365:1213–1218. doi: 10.1098/rstb.2009.0299. PubMed DOI PMC
Thornburg BG, Gotea V, Makalowski W. Transposable elements as a significant source of transcription regulating signals. Gene. 2006;365:104–110. doi: 10.1016/j.gene.2005.09.036. PubMed DOI
Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 2007;41:331–368. doi: 10.1146/annurev.genet.40.110405.090448. PubMed DOI PMC
Arguello, J. R., Fan, C., Wang, W. & Long, M. Origination of chimeric genes through DNA-level recombination. Karger (2007). PubMed
Gray YH. It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet. 2000;16:461–468. doi: 10.1016/S0168-9525(00)02104-1. PubMed DOI
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, genome size, and evolutionary insights in animals. Cytogenet. Genome Res. 2015;147:217–239. doi: 10.1159/000444429. PubMed DOI
Joly-Lopez Z, Bureau TE. Diversity and evolution of transposable elements in Arabidopsis. Chromosome Res. 2014;22:203–216. doi: 10.1007/s10577-014-9418-8. PubMed DOI
Kaminker, J. S. et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol. 3, 10.1186/gb-2002-3-12-research0084 (2002). PubMed PMC
Mahillon J, Chandler M. Insertion Sequences. Microbiol. Mol. Biol. Rev. 1998;62:725–774. PubMed PMC
Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet. 2007;23:183–191. doi: 10.1016/j.tig.2007.02.006. PubMed DOI
Baucom RS, et al. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 2009;5:e1000732. doi: 10.1371/journal.pgen.1000732. PubMed DOI PMC
Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 2009;10:691–703. doi: 10.1038/nrg2640. PubMed DOI PMC
Gu S, et al. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum. Mol. Genet. 2015;24:4061–4077. doi: 10.1093/hmg/ddv146. PubMed DOI PMC
Bertrand S, Escriva H. Evolutionary crossroads in developmental biology: amphioxus. Development. 2011;138:4819–4830. doi: 10.1242/dev.066720. PubMed DOI
Huang S, et al. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes. Nat. Commun. 2014;5:5896. doi: 10.1038/ncomms6896. PubMed DOI PMC
Chalopin D, Naville M, Plard F, Galiana D, Volff JN. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol. Evol. 2015;7:567–580. doi: 10.1093/gbe/evv005. PubMed DOI PMC
Canestro C, Albalat R. Transposon diversity is higher in amphioxus than in vertebrates: functional and evolutionary inferences. Briefings in functional genomics. 2012;11:131–141. doi: 10.1093/bfgp/els010. PubMed DOI
Igawa T, et al. Evolutionary history of the extant amphioxus lineage with shallow-branching diversification. Sci. Rep. 2017;7:1157. doi: 10.1038/s41598-017-00786-5. PubMed DOI PMC
Kim EB, et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature. 2011;479:223–227. doi: 10.1038/nature10533. PubMed DOI PMC
Banyai L, Patthy L. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors. Sci. Rep. 2016;6:30700. doi: 10.1038/srep30700. PubMed DOI PMC
Porter ML, et al. Shedding new light on opsin evolution. Proceedings. Biological sciences / The Royal Society. 2012;279:3–14. doi: 10.1098/rspb.2011.1819. PubMed DOI PMC
Liegertova M, et al. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution. Scientific reports. 2015;5:11885. doi: 10.1038/srep11885. PubMed DOI PMC
Terakita A. The opsins. Genome biology. 2005;6:213. doi: 10.1186/gb-2005-6-3-213. PubMed DOI PMC
Shichida Y, Matsuyama T. Evolution of opsins and phototransduction. Phil Trans R Soc B. 2009;364:2881–2895. doi: 10.1098/rstb.2009.0051. PubMed DOI PMC
Feuda R, Hamilton SC, McInerney JO, Pisani D. Metazoan opsin evolution reveals a simple route to animal vision. Proc. Natl. Acad. Sci. USA. 2012;109:18868–18872. doi: 10.1073/pnas.1204609109. PubMed DOI PMC
Plachetzki DC, Degnan BM, Oakley TH. The origins of novel protein interactions during animal opsin evolution. PLoS One. 2007;2:e1054. doi: 10.1371/journal.pone.0001054. PubMed DOI PMC
Peirson SN, Halford S, Foster RG. The evolution of irradiance detection: melanopsin and the non-visual opsins. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 2009;364:2849–2865. doi: 10.1098/rstb.2009.0050. PubMed DOI PMC
D’Aniello S, et al. Opsin evolution in the Ambulacraria. Marine Genomics. 2015;24(Part 2):177–183. doi: 10.1016/j.margen.2015.10.001. PubMed DOI
Ramirez MD, et al. The last common ancestor of most bilaterian animals possessed at least 9 opsins. Genome Biol Evol. 2016;8:3640–3652. doi: 10.1093/gbe/evw135. PubMed DOI PMC
Suga H, Schmid V, Gehring WJ. Evolution and functional diversity of jellyfish opsins. Curr. Biol. 2008;18:51–55. doi: 10.1016/j.cub.2007.11.059. PubMed DOI
Pantzartzi, C. N., Pergner, J., Kozmikova, I. & Kozmik, Z. The opsin repertoire of the European lancelet: a window into light detection in a basal chordate. Int. J. Dev. Biol.61, 763–772, 10.1387/ijdb.170139zk (2017). PubMed
Holland LZ, et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome research. 2008;18:1100–1111. doi: 10.1101/gr.073676.107. PubMed DOI PMC
Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A. Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr. Biol. 2005;15:1065–1069. doi: 10.1016/j.cub.2005.04.063. PubMed DOI
Koyanagi M, Terakita A, Kubokawa K, Shichida Y. Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-retinals as their chromophores. FEBS Lett. 2002;531:525–528. doi: 10.1016/S0014-5793(02)03616-5. PubMed DOI
Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997;268:78–94. doi: 10.1006/jmbi.1997.0951. PubMed DOI
Rogozin IB, Milanesi L. Analysis of donor splice sites in different eukaryotic organisms. J. Mol. Evol. 1997;45:50–59. doi: 10.1007/PL00006200. PubMed DOI
Sievers F, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Darzentas N. Circoletto: visualizing sequence similarity with Circos. Bioinformatics. 2010;26:2620–2621. doi: 10.1093/bioinformatics/btq484. PubMed DOI
Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics. 2006;7:474. doi: 10.1186/1471-2105-7-474. PubMed DOI PMC
Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA. 2015;6:11. doi: 10.1186/s13100-015-0041-9. PubMed DOI PMC
Holland LZ, Yu JK. Cephalochordate (amphioxus) embryos: procurement, culture, and basic methods. Methods in cell biology. 2004;74:195–215. doi: 10.1016/S0091-679X(04)74009-1. PubMed DOI
Hirakow R, Kajita N. Electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense: the neurula and larva. J. Anat. 1994;69:1–13. PubMed
Permanyer J, Albalat R, Gonzalez-Duarte R. Getting closer to a pre-vertebrate genome: the non-LTR retrotransposons of Branchiostoma floridae. International journal of biological sciences. 2006;2:48–53. doi: 10.7150/ijbs.2.48. PubMed DOI PMC
Muotri AR, Marchetto MC, Coufal NG, Gage FH. The necessary junk: new functions for transposable elements. Hum. Mol. Genet. 2007;16(R2):R159–R167. doi: 10.1093/hmg/ddm196. PubMed DOI
Osborne PW, Ferrier DE. Chordate Hox and ParaHox gene clusters differ dramatically in their repetitive element content. Mol. Biol. Evol. 2010;27:217–220. doi: 10.1093/molbev/msp235. PubMed DOI
Ferrier DE, Holland PW. Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. Mol Phylogenet Evol. 2002;24:412–417. doi: 10.1016/S1055-7903(02)00204-X. PubMed DOI
Xing F, et al. Characterization of amphioxus GDF8/11 gene, an archetype of vertebrate MSTN and GDF11. Dev. Genes Evol. 2007;217:549–554. doi: 10.1007/s00427-007-0162-3. PubMed DOI
Matsumoto Y, Fukamachi S, Mitani H, Kawamura S. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes) Gene. 2006;371:268–278. doi: 10.1016/j.gene.2005.12.005. PubMed DOI
Porath-Krause AJ, et al. Structural differences and differential expression among rhabdomeric opsins reveal functional change after gene duplication in the bay scallop, Argopecten irradians (Pectinidae) BMC Evol. Biol. 2016;16:250. doi: 10.1186/s12862-016-0823-9. PubMed DOI PMC
Watson CT, Lubieniecki KP, Loew E, Davidson WS, Breden F. Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri. BMC Evol. Biol. 2010;10:87–87. doi: 10.1186/1471-2148-10-87. PubMed DOI PMC
Dulai KS, von Dornum M, Mollon JD, Hunt DM. The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome research. 1999;9:629–638. PubMed
Neafsey DE, Hartl DL. Convergent loss of an anciently duplicated, functionally divergent RH2 opsin gene in the fugu and Tetraodon pufferfish lineages. Gene. 2005;350:161–171. doi: 10.1016/j.gene.2005.02.011. PubMed DOI
Holland LZ, Short S. Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain. Brain Behav. Evol. 2008;72:91–105. doi: 10.1159/000151470. PubMed DOI