Intra-tropical movements as a beneficial strategy for Palearctic migratory birds

. 2018 Jan ; 5 (1) : 171675. [epub] 20180103

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29410867

Migratory birds often move significantly within their non-breeding range before returning to breed. It remains unresolved under which circumstances individuals relocate, whether movement patterns are consistent between populations and to what degree the individuals benefit from the intra-tropical movement (ITM). We tracked adult great reed warblers Acrocephalus arundinaceus from a central and a southeastern European breeding population, which either stay at a single non-breeding site, or show ITM, i.e. move to a second site. We related ITM to the normalized difference vegetation index (NDVI) describing vegetation conditions and probably reflecting food abundance for these insectivorous birds. Three-quarters of birds showed ITM across the non-breeding range. We found no difference in range values and mean values of NDVI between the single non-breeding sites of stationary birds and the two sites of moving birds. The vegetation conditions were better at the second sites compared to the first sites during the period which moving birds spent at the first sites. Vegetation conditions further deteriorated at the first sites during the period the moving birds resided at their second sites. Our study provides evidence that birds probably benefit from improved conditions after ITM compared to the conditions at the sites from where they departed.

Zobrazit více v PubMed

Newton I. 2008. The migration ecology of birds. London, UK: Academic Press.

Greenberg R. 2005. Birds of two worlds: the ecology and evolution of migration. Baltimore, MD: Johns Hopkins University Press.

Heckscher CM, Taylor SM, Fox JW, Afanasyev V. 2011. Veery (Catharus fuscescens) wintering locations, migratory connectivity, and a revision of its winter range using geolocator technology. Auk 128, 531–542. (doi:10.1525/auk.2011.10280) DOI

Koleček J, et al. 2016. Cross-continental migratory connectivity and spatiotemporal migratory patterns in the great reed warbler. J. Avian Biol. 47, 756–767. (doi:10.1111/jav.00929) DOI

Stutchbury BJ, et al. 2016. Ecological causes and consequences of intratropical migration in temperate-breeding migratory birds. Am. Nat. 188, S28–S40. (doi:10.1086/687531) PubMed DOI

Moreau RE. 1972. The Palaearctic-African bird migration systems. London, UK: Academic Press.

Jones PJ. 1995. Migration strategies of Palearctic passerines in Africa. Israel J. Zool. 41, 393–406.

Thorup K, et al. 2017. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (doi:10.1126/sciadv.1601360) PubMed DOI PMC

Fraser KC, et al. 2012. Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore. Proc. R. Soc. B 279, 4901–4906. (doi:10.1098/rspb.2012.2207) PubMed DOI PMC

Callo PA, Morton ES, Stutchbury BJ. 2013. Prolonged spring migration in the red-eyed vireo (Vireo olivaceus). Auk 130, 240–246. (doi:10.1525/auk.2013.12213) DOI

Heckscher CM, Halley MR, Stampul PM. 2015. Intratropical migration of a Nearctic-Neotropical songbird (Catharus fuscescens) in South America with implications for migration theory. J. Trop. Ecol. 31, 285–289. (doi:10.1017/S0266467415000024) DOI

Lemke HW, Tarka M, Klaassen RHG, Åkesson M, Bensch S, Hasselquist D, Hansson B. 2013. Annual cycle and migration strategies of a trans-Saharan migratory songbird: a geolocator study in the great reed warbler. PLoS ONE 8, e79209 (doi:10.1371/journal.pone.0079209) PubMed DOI PMC

Hahn S, Emmenegger T, Lisovski S, Amrhein V, Zehtindjiev P, Liechti F. 2014. Variable detours in long-distance migration across ecological barriers and their relation to habitat availability at ground. Ecol. Evol. 4, 4150–4160. (doi:10.1002/ece3.1279) PubMed DOI PMC

Briedis M, Beran V, Hahn S, Adamík P. 2016. Annual cycle and migration strategies of a habitat specialist, the tawny pipit Anthus campestris, revealed by geolocators. J. Ornithol. 157, 619–626. (doi:10.1007/s10336-015-1313-3) DOI

Lislevand T, Briedis M, Heggøy O, Hahn S. 2017. Seasonal migration strategies of common ringed plovers Charadrius hiaticula. Ibis 159, 225–229. (doi:10.1111/ibi.12424) DOI

Boyle WA, Norris DR, Guglielmo CG. 2010. Storms drive altitudinal migration in a tropical bird. Proc. R. Soc. B 277, 2511–2519. (doi:10.1098/rspb.2010.0344) PubMed DOI PMC

Morel G. 1973. The Sahel zone as an environment for Palaearctic migrants. Ibis 115, 413–417. (doi:10.1111/j.1474-919X.1973.tb01979.x) DOI

Wolda H. 1988. Insect seasonality: why? Annu. Rev. Ecol. Syst. 19, 1–18. (doi:10.1146/annurev.es.19.110188.000245) DOI

White TCR. 2008. The role of food, weather and climate in limiting the abundance of animals. Biol. Rev. 83, 227–248. (doi:10.1111/j.1469-185X.2008.00041.x) PubMed DOI

Anu A, Sabu TK, Vineesh PJ. 2009. Seasonality of litter insects and relationship with rainfall in a wet evergreen forest in south Western Ghats. J. Insect Sci. 9, 46 (doi:10.1673/031.009.4601) PubMed DOI PMC

Zwarts L, Bijlsma RG, van der Kamp J, Wymenga E. 2009. Living on the edge: wetlands and birds in a changing Sahel. Utrecht, The Netherlands: KNNV Uitgeverij.

Morel GJ, Morel MY. 1992. Habitat use by Palearctic migrant passerines in West Africa. Ibis 134(Suppl. 1), 83–88. (doi:10.1111/j.1474-919X.1992.tb04737.x) DOI

Kennerley P, Pearson D. 2010. Reed and bush warblers. London, UK: Christopher Helm Publishers.

Leisler B. 1991. Acrocephalus arundinaceus – Drosselrohrsänger. In Handbuch der vögel mitteleuropas, vol. 12 (eds Glutz von Blotzheim UN, Bauer KM), pp. 486–539. Wiesbaden, Germany: Aula Verlag.

Hedenström A, Bensch S, Hasselquist D, Lockwood M, Ottosson U. 1993. Migration, stopover and moult of the great reed warbler Acrocephalus arundinaceus in Ghana, west Africa. Ibis 135, 177–180. (doi:10.1111/j.1474-919X.1993.tb02829.x) DOI

Siemann E. 1998. Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79, 2057–2070. (doi:10.1890/0012-9658(1998)079[2057:ETOEOP]2.0.CO;2) DOI

Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JM. 2001. Contrasting effects of plant richness and composition on insect communities: a field experiment. Am. Nat. 158, 17–35. (doi:10.1086/320866) PubMed DOI

Lassau SA, Hochuli DF. 2008. Testing predictions of beetle community patterns derived empirically using remote sensing. Divers. Distrib. 14, 138–147. (doi:10.1111/j.1472-4642.2007.00438.x) DOI

Nicholson SE, Tucker CJ, Ba MB. 1998. Desertification, drought, and surface vegetation: an example from the West African Sahel. B. Am. Meteorol. Soc. 79, 815–829. (doi:10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2) DOI

Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510. (doi:10.1016/j.tree.2005.05.011) PubMed DOI

Emmenegger T, Hahn S, Bauer S. 2014. Individual migration timing of common nightingales is tuned with vegetation and prey phenology at breeding sites. BMC Ecol. 14, 1 (doi:10.1186/1472-6785-14-9) PubMed DOI PMC

Hill RD. 1994. Theory of geolocation by light levels. Elephant seals: population ecology, behavior, and physiology. Berkeley, CA: Univ. of California Press.

Lisovski S, Hewson CM, Klaassen RH, Korner-Nievergelt F, Kristensen MW, Hahn S. 2012. Geolocation by light: accuracy and precision affected by environmental factors. Meth. Ecol. Evol. 3, 603–612. (doi:10.1111/j.2041-210X.2012.00185.x) DOI

Lisovski S, Hahn S. 2012. GeoLight – processing and analysing light-based geolocator data in R. Meth. Ecol. Evol. 3, 1055–1059. (doi:10.1111/j.2041-210X.2012.00248.x) DOI

R Core Team. 2016. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (https://www.R-project.org/)

FAO. 2013. Global ecological zones, 2nd edn Rome, Italy: Food and Agriculture Organization of the United Nations; See http://www.fao.org/geonetwork/.

Korner-Nievergelt F, Robinson R. 2014. Birdring: methods to analyse ring re-encounter data. R package version 1.3.

Kovach WL. 2011. Oriana – circular statistics for Windows, ver. 4. Pentraeth, UK: Kovach Computing Services.

Batschelet E. 1981. Circular statistics in biology, vol. 371 London, UK: Academic Press.

Schultz PA, Halpert MS. 1993. Global correlation of temperature, NDVI and precipitation. Adv. Space Res. 13, 277–280. (doi:10.1016/0273-1177(93)90559-T) DOI

Hao F, Zhang X, Ouyang W, Skidmore AK, Toxopeus AG. 2012. Vegetation NDVI linked to temperature and precipitation in the upper catchments of Yellow River. Environ. Model. Assess. 17, 389–398. (doi:10.1007/s10666-011-9297-8) DOI

Bates DM, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. (doi:10.18637/jss.v067.i01) DOI

Giannini A, Saravanan R, Chang P. 2005. Dynamics of the boreal summer African monsoon in the NSIPP1 atmospheric model. Clim. Dynam. 25, 517–535. (doi:10.1007/s00382-005-0056-x) DOI

Angelier F, Tonra CM, Holberton RL, Marra PP. 2011. Short-term changes in body condition in relation to habitat and rainfall abundance in American redstarts Setophaga ruticilla during the non-breeding season. J. Avian Biol. 42, 335–341. (doi:10.1111/j.1600-048X.2011.05369.x) DOI

Hasselquist D, Montràs-Janer T, Tarka M, Hansson B. 2017. Individual consistency of long-distance migration in a songbird: significant repeatability of autumn route, stopovers and wintering sites but not in timing of migration. J. Avian Biol. 48, 91–102. (doi:10.1111/jav.01292) DOI

Dedekind Z, Engelbrecht FA, Van der Merwe J. 2016. Model simulations of rainfall over southern Africa and its eastern escarpment. Water SA 42, 129–143. (doi:10.4314/wsa.v42i1.13) DOI

McKinnon EA, Rotenberg JA, Stutchbury BJ. 2015. Seasonal change in tropical habitat quality and body condition for a declining migratory songbird. Oecologia 179, 363–375. (doi:10.1007/s00442-015-3343-1) PubMed DOI

McKinnon EA, Stanley CQ, Stutchbury BJ. 2015. Carry-over effects of nonbreeding habitat on start-to-finish spring migration performance of a songbird. PLoS ONE 10, e0141580 (doi:10.1371/journal.pone.0141580) PubMed DOI PMC

Cresswell W, Boyd M, Stevens M. 2009. Movements of Palearctic and Afrotropical bird species during the dry season (November-February) within Nigeria In Proc. 12th Pan African Ornithol. Congress, Rawsonville, South Africa, 7–12 September, pp. 18–28. Cape Town, South Africa: Animal Demography Unit.

Dhondt AA. 2012. Interspecific competition in birds, vol. 2 Oxford, UK: Oxford University Press.

Pearson DJ. 1973. Moult of some Palaearctic warblers wintering in Uganda. Bird Study 20, 24–36. (doi:10.1080/00063657309476355) DOI

Bensch S, Hasselquist D, Hedenström A, Ottosson U. 1991. Rapid moult among Palaearctic passerines in West Africa: an adaptation to the oncoming dry season? Ibis 133, 47–52. (doi:10.1111/j.1474-919X.1991.tb04809.x) DOI

Studds CE, Marra PP. 2005. Nonbreeding habitat occupancy and population processes: an upgrade experiment with a migratory bird. Ecology 86, 2380–2385. (doi:10.1890/04-1145) DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.3949624

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...