The association between haemosporidian infection and non-breeding moult location in great reed warblers revisited by combining feather stable isotope profiles and geolocator data
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
20-00648S
Grantová Agentura České Republiky
31003A_160265
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
2016-00689
Vetenskapsrådet
2016-04391
Vetenskapsrådet
2020-03976
Vetenskapsrådet
2017-03937
Vetenskapsrådet
742646
HORIZON EUROPE European Research Council
PubMed
38141067
PubMed Central
PMC10830769
DOI
10.1007/s00442-023-05491-x
PII: 10.1007/s00442-023-05491-x
Knihovny.cz E-resources
- Keywords
- Avian malaria, Haemoproteus, Leucocytozoon, Plasmodium, Transmission areas,
- MeSH
- Phylogeny MeSH
- Haemosporida * MeSH
- Isotopes MeSH
- Humans MeSH
- Bird Diseases * epidemiology parasitology MeSH
- Parasites * MeSH
- Feathers MeSH
- Plasmodium * MeSH
- Prevalence MeSH
- Molting MeSH
- Songbirds * parasitology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Isotopes MeSH
Stable isotope analysis provides valuable insights into the ecology of long-distance migratory birds during periods spent away from a specific study site. In a previous study, Swedish great reed warblers (Acrocephalus arundinaceus) infected with haemosporidian parasites differed in feather isotope ratios compared to non-infected birds, suggesting that infected and non-infected birds spent the non-breeding season in different locations or habitats. Here, we use a novel dataset comprising geolocator data, isotopes, and haemosporidian infection status of 92 individuals from four Eurasian populations to investigate whether parasite transmission varies with geography or habitats. We found that the probability of harbouring Plasmodium and Leucocytozoon parasites was higher in birds moulting in the eastern region of the non-breeding grounds. However, no geographic pattern occurred for Haemoproteus infections or overall infection status. In contrast to the previous study, we did not find any relationship between feather isotope ratios and overall haemosporidian infection for the entire current dataset. Plasmodium-infected birds had lower feather δ15N values indicating that they occupied more mesic habitats. Leucocytozoon-infected birds had higher feather δ34S values suggesting more coastal sites or wetlands with anoxic sulphate reduction. As the composition and prevalence of haemosporidian parasites differed between the old and the current dataset, we suggest that the differences might be a consequence of temporal dynamics of haemosporidian parasites. Our results emphasize the importance of replicating studies conducted on a single population over a restricted time period, as the patterns can become more complex for data from wider geographical areas and different time periods.
Department Bird Migration Swiss Ornithological Institute Seerose 1 6204 Sempach Switzerland
Department of Parasitology Faculty of Veterinary Medicine Erciyes University 38280 Kayseri Turkey
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 603 65 Brno Czech Republic
See more in PubMed
Ambrose SH. Effects of diet, climate and physiology on nitrogen isotope abundance in terrestrial food webs. J Arch Sci. 1991;18:293–317. doi: 10.1016/0305-4403(91)90067-Y. DOI
Asghar M, Hasselquist D, Bensch S. Are chronic avian haemosporidian infections costly in wild birds? J Avian Biol. 2011;42:530–537. doi: 10.1111/j.1600-048X.2011.05281.x. DOI
Asghar M, Westerdahl H, Zehtindjiev P, Ilieva M, Hasselquist D, Bensch S. Primary peak and chronic malaria infection levels are correlated in experimentally infected great reed warblers. Parasitology. 2012;139:1246–1252. doi: 10.1017/S0031182012000510. PubMed DOI
Asghar M, Hasselquist D, Hansson B, Zehtindjiev P, Westerdahl H, Bensch S. Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science. 2015;347:436–438. doi: 10.1126/science.1261121. PubMed DOI
Bearhop S, Fiedler W, Furness RW, Votier SC, Waldron S, Newton J, Bowen GJ, Berthold P, Farnsworth K. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science. 2005;310:502–504. doi: 10.1126/science.1115661. PubMed DOI
Bensch S, Hasselquist D, Hedenström A, Ottosson U. Rapid moult among Palearctic passerines in West Africa—an adaptation to the oncoming dry season. Ibis. 1991;133:47–52. doi: 10.1111/j.1474-919X.1991.tb04809.x. DOI
Bensch S, Waldenström J, Jonzén N, Westerdahl H, Hansson B, Sejberg D, Hasselquist D. Temporal dynamics and diversity of avian malaria parasites in a single host species. J Anim Ecol. 2007;76:112–122. doi: 10.1111/j.1365-2656.2006.01176.x. PubMed DOI
Bensch S, Hellgren O, Pérez-Tris J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Res. 2009;9:1353–1358. doi: 10.1111/j.1755-0998.2009.02692.x. PubMed DOI
Berntell E, Zhang Q, Chafik L, Körnich H. Representation of multidecadal Sahel rainfall variability in 20th century reanalyses. Sci Rep. 2018;8:10937. doi: 10.1038/s41598-018-29217-9. PubMed DOI PMC
Brlík V, Malmiga G, Dimitrov D, Emmenegger T, Gavrilov A, Hasselquist D, Peev S, Willemoes M, Yohannes E, Hahn S, Hansson B, Procházka P. Population-specific assessment of carry-over effects across the range of a migratory songbird. Behav Ecol Sociobiol. 2020;74:143. doi: 10.1007/s00265-020-02929-7. DOI
Brlík V, Procházka P, Hansson B, Stricker CA, Yohannes E, Powell RL, Wunder MB. Animal tracing with sulfur isotopes: Spatial segregation and climate variability in Africa likely contribute to population trends of a migratory songbird. J Anim Ecol. 2022 doi: 10.1111/1365-2656.13848. PubMed DOI
Bürkner P-C. Bayesian item response modeling in R with brms and Stan. J Stat Softw. 2021;100(5):1–54. doi: 10.18637/jss.v100.i05. DOI
Chamberlain CP, Blum JD, Holmes RT, Feng X, Sherry TW, Graves GR. The use of isotope tracers for identifying populations of migratory birds. Oecologia. 1996;109:132–141. doi: 10.1007/s004420050067. PubMed DOI
Chamberlain CP, Bensch S, Feng X, Åkesson S, Andersson T. Stable isotopes examined across a migratory divide in Scandinavian willow warblers (Phylloscopus trochilus trochilus and Phylloscopus trochilus acredula) reflect their African winter quarters. Proc R Soc B. 2000;267:43–48. doi: 10.1098/rspb.2000.0964. PubMed DOI PMC
Cherel Y, Quillfeldt P, Delord K, Weimerskirch H. Combination of at-sea activity, geolocation and feather stable isotopes documents where and when seabirds molt. Front Ecol Evol. 2016;4:3. doi: 10.3389/fevo.2016.00003. DOI
Ciloglu A, Ellis VA, Bernotienė R, Valkiūnas G, Bensch S. A new one-step multiplex PCR assay for simultaneous detection and identification of avian haemosporidian parasites. Parasitol Res. 2019;118:191–201. doi: 10.1007/s00436-018-6153-7. PubMed DOI
De Roo A, Deheegher J. Ecology of the great reed warbler Acrocephalus arundinaceus (L.) wintering in the southern Congo savanna. Gerfaut. 1969;59:260–275.
Dyrcz A (2020) Great reed warbler (Acrocephalus arundinaceus), version 1.0. In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (eds): Birds of the world. Cornell Lab of Ornithology, Ithaca, NY, USA. 10.2173/bow.grrwar1.01
Ekolu J, Dieppois B, Sidibe M, Eden JM, Tramblay Y, Villarini G, Peña-Anguloc D, Mahé G, Paturel J-E, Onyutha C, Van De Wiel M. Long-term variability in hydrological droughts and floods in sub-Saharan Africa: new perspectives from a 65-year daily streamflow dataset. J Hydrol. 2022;613:128359. doi: 10.1016/j.jhydrol.2022.128359. DOI
Emmenegger T, Hahn S, Bauer S. Individual migration timing of common nightingales is tuned with vegetation and prey phenology at breeding sites. BMC Ecol. 2014;14:9. doi: 10.1186/1472-6785-14-9. PubMed DOI PMC
Emmenegger T, Bensch S, Hahn S, Kishkinev D, Procházka P, Zehtindjiev P, Bauer S. Effects of blood parasite infections on spatiotemporal migration patterns and activity budgets in a long-distance migratory passerine. Ecol Evol. 2021;11:753–762. doi: 10.1002/ece3.7030. PubMed DOI PMC
Fecchio A, Clark NJ, Bell JA, Skeen HR, Lutz HL, De La Torre GM, Vaughan JA, Tkach VV, Schunck F, Ferreira FC, Braga EM, Lugarini C, Wamiti W, Dispoto JH, Galen SC, Kirchgatter K, Sagario MC, Cueto VR, Gonzalez-Acuna D, Inumaru M, Sato Y, Schumm YR, Quillfeldt P, Pellegrino I, Dharmarajan G, Gupta P, Robin VV, Ciloglu A, Yildirim A, Huang X, Chapa-Vargas L, Alvarez-Mendizabal P, Santiago-Alarcon D, Drovetski SV, Hellgren O, Voelker G, Ricklefs RE, Hackett SJ, Collins MD, Weckstein JD, Wells K. Global drivers of avian haemosporidian infections vary across zoogeographical regions. Glob Ecol Biogeogr. 2021;30:2393–2406. doi: 10.1111/geb.13390. DOI
Finch T, Butler SJ, Franco AM, Cresswell W. Low migratory connectivity is common in long-distance migrant birds. J Anim Ecol. 2017;86:662–673. doi: 10.1111/1365-2656.12635. PubMed DOI
Galen SC, Borner J, Martinsen ES, Schaer J, Austin CC, West CJ, Perkins SL. The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict. R Soc Open Sci. 2018;5:171780. doi: 10.1098/rsos.171780. PubMed DOI PMC
García-Pérez B, Hobson KA. A multi-isotope (δ2H, δ13C, δ15N) approach to establishing migratory connectivity of Barn Swallow (Hirundo rustica) Ecosphere. 2014;5:21. doi: 10.1890/ES13-00116.1. DOI
Glew KSJ, Wanless S, Harris MP, Daunt F, Erikstad KE, Strøm H, Trueman CN. Moult location and diet of auks in the North Sea inferred from coupled light-based and isotope-based geolocation. Mar Ecol Prog Ser. 2018;599:239–251. doi: 10.3354/meps12624. DOI
Gu W, Regens JL, Beier JC, Novak RJ. Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission. Proc Natl Acad Sci. 2006;103:17560–17563. doi: 10.1073/pnas.0608452103. PubMed DOI PMC
Hallworth MT, Marra PP. Miniaturized GPS tags identify non-breeding territories of a small breeding migratory songbird. Sci Rep. 2015;5:11069. doi: 10.1038/srep11069. PubMed DOI PMC
Hallworth MT, Studds CE, Sillett TS, Marra PP. Do archival light-level geolocators and stable hydrogen isotopes provide comparable estimates of breeding-ground origin? Auk. 2013;130:273–282. doi: 10.1525/auk.2013.13037. DOI
Hanmer DB. A trapping study of Palaearctic passerines at Nchalo, southern Malawi. Scopus. 1979;3:81–92.
Hasselquist D, Montràs-Janer T, Tarka M, Hansson B. Individual consistency of long-distance migration in a songbird: significant repeatability of autumn route, stopovers and wintering sites but not in timing of migration. J Avian Biol. 2017;48:91–102. doi: 10.1111/jav.01292. DOI
Heaton THE, Vogel JC, von la Chevallerie G, Gollet G. Climatic influence on the isotopic composition of bone nitrogen. Nature. 1986;322:822–823. doi: 10.1038/322822a0. DOI
Hedenström A, Bensch S, Hasselquist D, Lockwood M, Ottosson U. Migration, stopover and moult of the great reed warbler Acrocephalus arundinaceus in Ghana, West Africa. Ibis. 1993;135:177–180. doi: 10.1111/j.1474-919X.1993.tb02829.x. DOI
Hellgren O, Waldenström J, Bensch S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium and Haemoproteus from avian blood. J Parasitol. 2004;90:797–802. doi: 10.1645/GE-184R1. PubMed DOI
Hill RD. Theory of geolocation by light levels. Elephant seals: population ecology, behavior, and physiology. Berkeley: University of California Press; 1994.
Hobson KA, Wassenaar LI. Linking breeding and wintering grounds of Neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia. 1996;109:142–148. doi: 10.1007/s004420050068. PubMed DOI
Hobson KA, Van Wilgenburg SL, Wassenaar LI, Powell RL, Still CJ, Craine JM. A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere. 2012;3:44. doi: 10.1890/ES12-00018.1. DOI
Hoffman MD, Gelman A. The no-U-turn sampler: adaptively setting path lengths in hamiltonian Monte Carlo. J Mach Learn Res. 2014;15:1593–1623. doi: 10.48550/arXiv.1111.4246. DOI
Jenni L, Winkler R. Moult and ageing of European passerines. London: Bloomsbury; 2020.
Koleček J, Procházka P, El-Arabany N, Tarka M, Ilieva M, Hahn S, Honza M, de la Puente J, Bermejo A, Gürsoy A, Bensch S, Zehtindjiev P, Hasselquist D, Hansson B. Cross-continental migratory connectivity and spatiotemporal migratory patterns in the great reed warbler. J Avian Biol. 2016;47:756–767. doi: 10.1111/jav.00929. DOI
Koleček J, Hahn S, Emmenegger T, Procházka P. Intra-tropical movements as a beneficial strategy for Palearctic migratory birds. Royal Soc Open Sci. 2018;5:171675. doi: 10.1098/rsos.171675. PubMed DOI PMC
Laird M. The natural history of larval mosquito habitats. London: Academic Press; 1988.
Lemke HW, Tarka M, Klaassen RH, Åkesson M, Bensch S, Hasselquist D, Hansson B. Annual cycle and migration strategies of a trans-Saharan migratory songbird: a geolocator study in the great reed warbler. PLoS ONE. 2013;8:e79209. doi: 10.1371/journal.pone.0079209. PubMed DOI PMC
Lisovski S, Hahn S. GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol Evol. 2012;3:1055–1059. doi: 10.1111/j.2041-210X.2012.00248.x. DOI
Lisovski S, Hewson CM, Klaassen RH, Korner-Nievergelt F, Kristensen MW, Hahn S. Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol. 2012;3:603–612. doi: 10.1111/j.2041-210X.2012.00185.x. DOI
Lott CA, Meehan TD, Heath JA. Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: influence of marine prey base. Oecologia. 2003;134:505–510. doi: 10.1007/s00442-002-1153-8. PubMed DOI
Marra PP, Hobson KA, Holmes RT. Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science. 1998;282:1884–1886. doi: 10.1126/science.282.5395.1884. PubMed DOI
Palmer RW, de Moor F. Annotated records of blackfly (Diptera: Simuliidae) distribution in southern Africa. Afr Entomol. 1998;6:223–251.
Pearson DJ. The timing of complete moult in the Great Reed Warbler Acrocephalus arundinaceus. Ibis. 1975;117:506–509. doi: 10.1111/j.1474-919X.1975.tb04244.x. DOI
Quinby BM, Creighton JC, Flaherty EA. Stable isotope ecology in insects: a review. Ecol Entomol. 2020;45:1231–1246. doi: 10.1111/een.12934. DOI
R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
Sealy JC, van der Merwe NJ, Lee-Thorp JA, Lanhamm JL. Nitrogen isotopic ecology in southern Africa: implications for environmental and dietary tracing. Geochim Cosmochim Acta. 1987;51:2707–2717. doi: 10.1016/0016-7037(87)90151-7. DOI
Seifert N, Ambrosini R, Bontempo L, Camin F, Liechti F, Rubolini D, Scandolara C, Saino N, Hahn S. Matching geographical assignment by stable isotopes with African non-breeding sites of barn swallows Hirundo rustica tracked by geolocation. PLoS ONE. 2018;13:e0202025. doi: 10.1371/journal.pone.0202025. PubMed DOI PMC
Stan Development Team (2021) Stan user’s guide version 2.28. https://mc-stan.org/docs/2_28/stan-users-guide/
Svensson L (1992) Identification guide to European passerines, 4th edn. Lars Svensson, Stockholm
Thode HG. Sulphur isotopes in nature and the environment: an overview. In: Krouse HR, Grinenko VA, editors. Stable isotopes in the assessment of natural and anthropogenic sulphur in the environment. New York: Wiley; 1991. pp. 1–26.
van der Merwe NJ, Lee-Thorp JA, Thackeray JF, Hall-Martin A, Kruger FJ, Coetzee H, Bell RH, Lindeque M. Source-area determination of elephant ivory by isotopic analysis. Nature. 1990;346:744–746. doi: 10.1038/346744a0. DOI
Veen T, Hjernquist MB, Van Wilgenburg SL, Hobson KA, Folmer E, Font L, Klaassen M. Identifying the African wintering grounds of hybrid flycatchers using a multi-isotope (δ2H, δ13C, δ15N) assignment approach. PLoS ONE. 2014;9:e98075. doi: 10.1371/journal.pone.0098075. PubMed DOI PMC
Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U. Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol. 2002;11:1545–1554. doi: 10.1046/j.1365-294x.2002.01523.x. PubMed DOI
Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT. Links between worlds: unraveling migratory connectivity. Trends Ecol Evol. 2002;17:76–83. doi: 10.1016/S0169-5347(01)02380-1. DOI
Westerdahl H, Waldenström J, Hansson B, Hasselquist D, von Schantz T, Bensch S. Associations between malaria and MHC genes in a migratory songbird. Proc R Soc B. 2005;272:1511–1518. doi: 10.1098/rspb.2005.3113. PubMed DOI PMC
Yanco SW, Linkhart BD, Marra PP, Mika M, Ciaglo M, Carver A, Wunder MB. Niche dynamics suggest ecological factors influencing migration in an insectivorous owl. Ecology. 2022;103:e3617. doi: 10.1002/ecy.3617. PubMed DOI
Yohannes E, Bensch S, Lee R. Philopatry of winter moult area in migratory Great Reed Warblers Acrocephalus arundinaceus demonstrated by stable isotope profiles. J Ornithol. 2008;149:261–265. doi: 10.1007/s10336-007-0271-9. DOI
Yohannes E, Hansson B, Lee RW, Waldenström J, Westerdahl H, Åkesson M, Hasselquist D, Bensch S. Isotope signatures in winter moulted feathers predict malaria prevalence in a breeding avian host. Oecologia. 2008;158:299–306. doi: 10.1007/s00442-008-1138-3. PubMed DOI
Yohannes E, Palinauskas V, Valkiūnas G, Lee RW, Bolshakov CV, Bensch S. Does avian malaria infection affect feather stable isotope signatures? Oecologia. 2011;167:937–942. doi: 10.1007/s00442-011-2041-x. PubMed DOI
Zazzo A, Monahan FJ, Moloney AP, Green S, Schmidt O. Sulphur isotopes in animal hair track distance to sea. Rapid Commun Mass Spectrom. 2011;25:2371–2378. doi: 10.1002/rcm.5131. PubMed DOI