Animal tracing with sulfur isotopes: Spatial segregation and climate variability in Africa likely contribute to population trends of a migratory songbird
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
PubMed
36411970
DOI
10.1111/1365-2656.13848
Knihovny.cz E-zdroje
- Klíčová slova
- climate variability, isoscape, migration, migratory divide, remote sensing, sulphur, tracing, tracking,
- MeSH
- hustota populace MeSH
- izotopy síry MeSH
- migrace zvířat MeSH
- roční období MeSH
- zpěvní ptáci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Afrika MeSH
- Názvy látek
- izotopy síry MeSH
Climatic conditions affect animals but range-wide impacts at the population level remain largely unknown, especially in migratory species. However, studying climate-population relationships is still challenging in small migrants due to a lack of efficient and cost-effective geographic tracking method. Spatial distribution patterns of environmental stable isotopes (so called 'isoscapes') generally overcome these limitations but none of the currently available isoscapes provide a substantial longitudinal gradient in species-rich sub-Saharan Africa. In this region, sulphur (δ34 S) has not been sufficiently explored on a larger scale. We developed a δ34 S isoscape to trace animal origins in sub-Saharan Africa by coupling known-origin samples from tracked migratory birds with continental remotely sensed environmental data building on environment-δ34 S relationships using a flexible machine learning technique. Furthermore, we link population-specific nonbreeding grounds with interannual climatic variation that might translate to breeding population trends. The predicted δ34 S isotopic map featured east-west and coast-to-inland isotopic gradients and was applied to predict nonbreeding grounds of three breeding populations of Eurasian Reed Warblers Acrocephalus scirpaceus with two distinct migratory phenotypes. Breeding populations as well as migratory phenotypes exhibited large-scale segregation within the African nonbreeding range. These regions also differed substantially in the interannual climatic variation, with higher interannual variability in the eastern part of the range during 2001-2012. Over the same period, the eastern European breeding population seemed to have experienced a more steep decline in population size. The link between migratory patterns and large-scale climatic variability appears important to better understand population trajectories in many declining migratory animals. We believe animal tracing using sulphur isotopes will facilitate these efforts and offers manifold ecological and forensic applications in the biodiversity hotspot of sub-Saharan Africa.
Czech Academy of Sciences Institute of Vertebrate Biology Brno Czech Republic
Department of Biology Lund University Lund Sweden
Department of Ecology Charles University Prague Czech Republic
Department of Geography and the Environment University of Denver Denver Colorado USA
Department of Integrative Biology University of Colorado Denver Denver Colorado USA
Institute of Limnology University of Konstanz Constance Germany
U S Geological Survey Fort Collins Science Center Denver Colorado USA
Zobrazit více v PubMed
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 170191. https://doi.org/10.1038/sdata.2017.191
Bataille, C. P., Jaouen, K., Milano, S., Trost, M., Steinbrenner, S., Crubézy, É., & Colleter, R. (2021). Triple sulfur-oxygen-strontium isotopes probabilistic geographic assignment of archaeological remains using a novel sulfur isoscape of western Europe. PLoS ONE, 16(5), e0250383. https://doi.org/10.1371/journal.pone.0250383
Bataille, C. P., von Holstein, I. C. C., Laffoon, J. E., Willmes, M., Liu, X.-M., & Davies, G. R. (2018). A bioavailable strontium isoscape for Western Europe: A machine learning approach. PLoS ONE, 13(5), e0197386. https://doi.org/10.1371/journal.pone.0197386
Bauer, S., & Hoye, B. J. (2014). Migratory animals couple biodiversity and ecosystem functioning worldwide. Science, 344, 1242552. https://doi.org/10.1126/science.1242552
Bearhop, S., Fiedler, W., Furness, R. W., Votier, S. C., Waldron, S., Newton, J., Bowen, G. J., Berthold, P., & Farnsworth, K. (2005). Assortative mating as a mechanism for rapid evolution of a migratory divide. Science, 310(5747), 502-504. https://doi.org/10.1126/science.1115661
Belgiu, M., & Dragut, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Bensch, S., Hasselquist, D., Hedenström, A., & Ottosson, U. (1991). Rapid moult among Palearctic passerines in West Africa - an adaptation to the oncoming dry season. Ibis, 133(1), 47-52. https://doi.org/10.1111/j.1474-919X.1991.tb04809.x
BirdLife International. (2015). European Red List of Birds. http://www.birdlife.org/europe-and-central-asia/European-birds-of-conservation-concern
BirdLife International and NatureServe. (2014). Bird species distribution maps of the world.
Bowen, G. J., Wassenaar, L. I., & Hobson, K. A. (2005). Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia, 143, 337-348. https://doi.org/10.1007/s00442-004-1813-y
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
Briedis, M., & Bauer, S. (2018). Migratory connectivity in the context of differential migration. Biology Letters, 14, 20180679. https://doi.org/10.1098/rsbl.2018.0679
Brlík, V., Malmiga, G., Dimitrov, D., Emmenegger, T., Gavrilov, A., Hasselquist, D., Peev, S., Willemoes, M., Yohannes, E., Hahn, S., Hansson, B., & Procházka, P. (2020). Population-specific assessment of carry-over effects across the range of a migratory songbird. Behavioral Ecology and Sociobiology, 74, 143. https://doi.org/10.1007/s00265-020-02929-7
Brlík, V., Malmiga, G., Dimitrov, D., Emmenegger, T., Gavrilov, A., Hasselquist, D., Peev, S., Willemoes, M., Yohannes, E., Hahn, S., Hansson, B., & Procházka, P. (2020). Population-specific assessment of carry-over effects across the range of a migratory song-bird. Zenodo. https://doi.org/10.5281/zenodo.4088174
Brlík, V., Pipek, P., Brandis, K., Chernetsov, N., Herrera, M. L. G., Kiat, Y., Lanctot, R. B., Marra, P. P., Norris, D. R., Quillfeldt, P., Saalfeld, S. T., Stricker, C. A., Thomson, R. L., Zhao, T., & Procházka, P. (2022). The reuse of avian samples: Opportunities, pitfalls, and a solution. Ibis, 164, 343-349. https://doi.org/10.1111/ibi.12997
Brlík, V., Procházka, P., Hansson, B., Stricker, C. A., Yohannes, E., Powell, R. L., & Wunder, M. B. (2022). Animal tracing with sulfur isotopes - δ34S isoscapes and uncertainty layer. Zenodo. https://doi.org/10.5281/zenodo.6334822
Brlík, V., Šilarová, E., Škorpilová, J., Alonso, H., Anton, M., Aunins, A., Benkö, Z., Biver, G., Busch, M., Chodkiewicz, T., Chylarecki, P., Coombes, D., de Carli, E., del Moral, J. C., Derouaux, A., Escandell, V., Eskildsen, D. P., Fontaine, B., Foppen, R. P. B., … Klvaňová, A. (2022). Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Scientific Data, 8, 21. https://doi.org/10.1038/s41597-021-00804-2
Case, J. W., & Krouse, H. R. (1980). Variations in sulphur content and stable sulphur isotope composition of vegetation near a SO2 source at Fox Creek, Alberta, Canada. Oecologia, 257, 248-257. https://doi.org/10.1007/BF00572687
CIESIN. (2018). Gridded population of the world, version 4 (GPWv4): Population density, revision 11. NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H49C6VHW
Copernicus Sentinel. (2015a). Sentinel-5P NRTI SO2: Near Real-Time Sulphur Dioxide.
Copernicus Sentinel. (2015b). Sentinel-5P NRTI NO2: Near Real-Time Nitrogen Dioxide.
Danielson, J., & Gesch, D. (2011). Global multi-resolution terrain elevation data. USGS Report 1073.
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436-468. https://doi.org/10.3402/tellusa.v16i4.8993
Delmore, K. E., & Irwin, D. E. (2014). Hybrid songbirds employ intermediate routes in a migratory divide. Ecology Letters, 17, 1211-1218. https://doi.org/10.1111/ele.12326
Dowsett-Lemaire, F., & Dowsett, R. (1987). European reed and marsh warblers in Africa: Migraton patterns, moult an habitat. Ostrich, 58, 65-85. https://doi.org/10.1080/00306525.1987.9634145
Drake, A., Martin, M., & Green, D. J. (2014). Winter habitat use does not influence spring arrival dates or the reproductive success of yellow warblers breeding in the arctic. Polar Biology, 37, 181-191. https://doi.org/10.1007/s00300-013-1421-6
Drake, A., Rock, C., Quinlan, S. P., & Green, D. J. (2013). Carry-over effects of winter habitat vary with age and sex in yellow warblers Setophaga petechia. Journal of Avian Biology, 44, 321-330. https://doi.org/10.1111/j.1600-048X.2013.05828.x
Felicetti, L. A., Schwartz, C. C., Rye, R. O., Haroldson, M. A., Gunther, K. A., Phillips, D. L., & Robbins, C. T. (2003). Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears. Canadian Journal of Zoology, 81, 763-770. https://doi.org/10.1139/Z03-054
Florin, S. T., Felicetti, L. A., & Robbins, C. T. (2011). The biological basis for understanding and predicting dietary-induced variation in nitrogen and Sulphur isotope ratio discrimination. Functional Ecology, 25(3), 519-526. https://doi.org/10.1111/j.1365-2435.2010.01799.x
Freeman, E. A., Moisen, G. G., Coulston, J. W., & Wilson, B. T. (2016). Random forests and stochastic gradient boosting for predicting canopy cover: Comparing tuning processes and model performance. Canadian Journal of Forest Research, 46, 323-339. https://doi.org/10.1139/cjfr-2014-0562
Fuller, A. R. J., Gregory, R. D., Gibbons, D. W., Marchant, J. H., Wilson, J. D., Baillie, R., & Carter, N. (1995). Population declines and range contractions among lowland farmland birds in Britain. Conservation Biology, 9(6), 1425-1441. https://doi.org/10.1046/j.1523-1739.1995.09061425.x
Garg, A., Shukla, P. R., Bhattacharya, S., & Dadhwal, V. K. (2001). Sub-region (district) and sector level SO2 and NOx emissions for India: Assessment of inventories and mitigation flexibility. Atmospheric Environment, 35, 703-713. https://doi.org/10.1016/S1352-2310(00)00316-2
Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B. K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G. K., & Wilmoth, J. (2014). World population stabilization unlikely this century. Science, 346, 234-237. https://doi.org/10.1126/science.1257469
Gill, J. A., Norris, K., Potts, P. M., Gunnarsson, T. G., Atkinson, P. W., & Sutherland, W. J. (2001). The buffer effect and large-scale population regulation in migratory birds. Nature, 412, 436-438. https://doi.org/10.1038/35086568
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
Hanzelka, J., Horká, P., & Reif, J. (2019). Spatial gradients in country-level population trends of European birds. Diversity and Distributions, 25, 1527-1536. https://doi.org/10.1111/ddi.12945
Hasselquist, D., Montràs-Janer, T., Tarka, M., & Hansson, B. (2017). Individual consistency of long-distance migration in a songbird: Significant repeatability of autumn route, stopovers and wintering sites but not in timing of migration. Journal of Avian Biology, 48(1), 91-102. https://doi.org/10.1111/jav.01292
Hedenström, A., Bensch, S., Hasselquist, D., Lockwood, M., & Ottosson, U. (1985). Migration, stopover and moult of the great reed warbler Acrocephalus arundinaceus in Ghana, West Africa. Ibis, 135, 177-180. https://doi.org/10.1111/j.1474-919X.1993.tb02829.x
Helbig, A. J. (1991). Inheritance of migratory direction in a bird species: A cross-breeding experiment with SE- and SW-migrating blackcaps (Sylvia atricapilla). Behavioral Ecology and Sociobiology, 28(1), 9-12. https://doi.org/10.1007/BF00172133
Hewitt, G. (2000). The genetic legacy of the quaternary ice ages. Nature, 405, 907-913. https://doi.org/10.1038/35016000
Hewson, C. M., Thorup, K., Pearce-Higgins, J. W., & Atkinson, P. W. (2016). Population decline is linked to migration route in the common cuckoo. Nature Communications, 7, 12296. https://doi.org/10.1038/ncomms12296
Hijmans, R. J. (2022). Raster: Geographic data analysis and modeling. R package version 3.5-15. https://CRAN.R-project.org/package=raster
Hobson, K. A. (2003). Making migratory connections with stable isotopes. In P. Berthold, E. Gwinner, & E. Sonnenschein (Eds.), Avian migration (p. 600). Springer.
Hobson, K. A., & Wassenaar, L. I. (2018). Tracking animal migration with stable isotopes (2nd ed.). Academic Press.
Jenkins, C. N., Pimm, S. L., & Joppa, L. N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences of the United States of America, 110, E2602-E32610. https://doi.org/10.1073/pnas.1302251110
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491, 444-448. https://doi.org/10.1038/nature11631
Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1-26. https://doi.org/10.18637/jss.v028.i05
Lott, C. A., Meehan, T. D., & Heath, J. A. (2003). Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: Influence of marine prey base. Oecologia, 134(4), 505-510. https://doi.org/10.1007/s00442-002-1153-8
Ma, C., Vander Zanden, H. B., Wunder, M., & Bowen, G. J. (2020). assignR: An R package for isotope-based geographic assignment. Methods in Ecology and Evolution, 11, 996-1001. https://doi.org/10.1111/2041-210X.13426
Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., & Evans, M. J. (2003). Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. Journal of Geophysical Research, 108(2), 4537. https://doi.org/10.1029/2003JD003453
McCutchan, J. H., Lewis, W. M., Kendall, C., & Mcgrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 2, 378-390. https://doi.org/10.1034/j.1600-0706.2003.12098.x
Møller, A. P., Garamszegi, L. Z., Peralta-Sánchez, J. M., & Soler, J. J. (2011). Migratory divides and their consequences for dispersal, population size and parasite-host interactions. Journal of Evolutionary Biology, 24(8), 1744-1755. https://doi.org/10.1111/j.1420-9101.2011.02302.x
NASA Ocean Biology Processing Group. (2012). Distance to Nearest Coastline: 0.01-Degree Grid. http://pacioos.org/metadata/dist2coast_1deg.html
Newton, I. (2008). The migration ecology of birds. Academic Press. https://doi.org/10.1017/CBO9781107415324.004
Norris, D. R., Marra, P. P., Kyser, T. K., Sherry, T. W., & Ratcliffe, L. M. (2004). Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proceedings of the Royal Society B, 271, 59-64. https://doi.org/10.1098/rspb.2003.2569
Ockendon, N., Johnston, A., & Baillie, S. R. (2014). Rainfall on wintering grounds affects population change in many species of Afro-Palaearctic migrants. Journal of Ornithology, 155, 905-917. https://doi.org/10.1007/s10336-014-1073-5
Ockendon, N., Leech, D., & Pearce-Higgins, J. W. (2013). Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carry-over effects from wintering grounds. Biology Letters, 9, 20130669. https://doi.org/10.1098/rsbl.2013.0669
Ohizumi, T., & Fukuzaki, N. (1997). Sulphur isotopic view on the sources of Sulphur in atmospheric fallout along the coast of the sea of Japan. Atmospheric Environment, 31(9), 1339-1348. https://doi.org/10.1016/S1352-2310(96)00278-6
Pearce-Higgins, J. W., Eglington, S. M., Martay, B., & Chamberlain, D. E. (2015). Drivers of climate change impacts on bird communities. Journal of Animal Ecology, 84, 943-954. https://doi.org/10.1111/1365-2656.12364
Persits, F., Ahlbrandt, T., Tuttle, M., Charpentier, R., Brownfield, M., & Takahashi, K. (1997). Maps showing geology, oil and gas fields and geological provinces of Africa. In U.S. Geological Survey Open-File Report 97-470-A. https://doi.org/10.3133/ofr97470A; https://pubs.er.usgs.gov/publication/ofr97470A
Procházka, P., Brlík, V., Yohannes, E., Meister, B., Ilieva, M., & Hahn, S. (2018a). Across a migratory divide: Divergent migration directions and non-breeding grounds of Eurasian reed warblers revealed by geolocators and stable isotopes. Journal of Avian Biology, 49(6), e01769. https://doi.org/10.1111/jav.01769
Procházka, P., Brlík, V., Yohannes, E., Meister, B., Ilieva, M., & Hahn, S. (2018b). Data from: Across a migratory divide: Divergent migration directions and non-breeding grounds of Eurasian reed warblers revealed by geolocators and stable isotopes. Dryad Digital Repository. https://doi.org/10.5061/dryad.f1j38k7
Procházka, P., Hahn, S., Rolland, S., Van Der Jeugd, H., Csörgö, T., Jiguet, F., Mokwa, T., Liechti, F., Vangeluwe, D., & Korner-Nievergelt, F. (2017). Delineating large-scale migratory connectivity of reed warblers using integrated multistate models. Diversity and Distributions, 23, 27-40. https://doi.org/10.1111/ddi.12502
Procházka, P., Van Wilgenburg, S. L., Neto, J. M., Yosef, R., & Hobson, K. A. (2013). Using stable hydrogen isotopes (δ2H) and ring recoveries to trace natal origins in a Eurasian passerine with a migratory divide. Journal of Avian Biology, 44(6), 541-550. https://doi.org/10.1111/j.1600-048X.2013.00185.x
R Core Team. (2021). A language and environment for statistical computing. R Foundation for Statistical Computing.
Reich, M. S., Flockhart, D. T. T., Norris, D. R., Hu, L., & Bataille, C. P. (2021). Continuous-surface geographic assignment of migratory animals using strontium isotopes: A case study with monarch butterflies. Methods in Ecology and Evolution., 12, 2445-2457. https://doi.org/10.1111/2041-210X.13707
Reif, J., & Hanzelka, J. (2020). Continent-wide gradients in open-habitat insectivorous bird declines track spatial patterns in agricultural intensity across Europe. Global Ecology and Biogeography, 29, 1-26. https://doi.org/10.1111/geb.13170
Robinson, R. A., Grantham, M. J., & Clark, J. A. (2009). Declining rates of ring recovery in British birds. Ringing and Migration, 24(4), 266-272. https://doi.org/10.1080/03078698.2009.9674401
Rushing, C. S., Ryder, T. B., & Marra, P. P. (2016). Quantifying drivers of population dynamics for a migratory bird throughout the annual cycle. Proceedings of the Royal Society B, 283, 20152846. https://doi.org/10.1098/rspb.2015.2846
Scheffers, B. R., Oliveira, B. F., Lamb, I., & Edwards, D. P. (2019). Global wildlife trade across the tree of life. Science, 366, 71-76. https://doi.org/10.1126/science.aav5327
Scordato, E., Smith, C., Smenov, G., Liu, Y., Wilkins, M. R., Liang, W., Rubtsov, A., Sundev, G., Koyama, K., Turbek, S. P., Wunder, M. B., Stricker, C. A., & Safran, R. J. (2020). Migratory divides coincide with reproductive barriers across replicated avian hybrid zones above the Tibetan Plateau. Ecology Letters, 23, 231-241. https://doi.org/10.1111/ele.13420
Sherry, T. W., & Holmes, R. T. (1996). Winter habitat quality, population limitation, and conservation of Neotropical-Nearctic migrant birds. Ecology, 77(1), 36-48. https://doi.org/10.2307/2265652
Somveille, M., Manica, A., Butchart, S. H. M., & Rodrigues, A. S. L. (2013). Mapping global diversity patterns for migratory birds. PLoS ONE, 8(8), e70907. https://doi.org/10.1371/journal.pone.0070907
Sorensen, M. C., Fairhurst, G. D., Eiermann, S. J., Newton, J., Yohannes, E., & Spottiswoode, C. N. (2016). Seasonal rainfall at long-term migratory staging sites is associated with altered carry-over effects in a Palearctic-African migratory bird. BMC Ecology, 16, 41. https://doi.org/10.1186/s12898-016-0096-6
Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chan, K., & Lima, M. (2002). Ecological effects of climate fluctuations. Science, 297, 1292-1297. https://doi.org/10.1126/science.1071281
Telenský, T., Klvaňa, P., Jelínek, M., Cepák, J., & Reif, J. (2020). The influence of climate variability on demographic rates of avian afro-palearctic migrants. Scientific Reports, 10, 17592. https://doi.org/10.1038/s41598-020-74,658-w
Thode, H. G. (1991). Sulphur isotopes in nature and the environment: An overview. In Stable isotopes: Natural and anthropogenic Sulphur in the environment (pp. 1-26). John Wiley and Sons. https://doi.org/10.1016/S0167-5273(97)00130-7
Thode, H. G., Macnamar, J., & Fleming, W. (1953). Sulphur isotope fractionation in nature and geological and biological time scales. Geochimicia et Cosmochimica Acta, 3, 235-243. https://doi.org/10.1016/0016-7037(53)90042-8
Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S., & Packer, C. (2017). Future threats to biodiversity and pathways to their prevention. Nature, 546, 73-81. https://doi.org/10.1038/nature22900
Turbek, S. P., Schield, D., Scordato, E. S. C., Contina, A., Da, X.-W., Liu, Y., Liu, Y., Pagani-Núnez, E., Ren, Q.-M., Smith, C. C. R., Stricker, C. A., Wunder, M. B., Zonana, D. M., & Safran, R. J. (2022). A migratory divide spanning two continents is associated with genomic and ecological divergence. Evolution, 76, 722-736. https://doi.org/10.1111/evo.14448
Valenzuela, L. O., Chesson, L. A., O'Grady, S. P., Cerling, T. E., & Ehleringer, J. R. (2011). Spatial distributions of carbon, nitrogen and sulfur isotope ratios in human hair across the Central United States. Rapid Communications in Mass Spectrometry, 25(7), 861-868. https://doi.org/10.1002/rcm.4934
Vander Zanden, H. B., Wunder, M., Hobson, K. A., Van Wilgenburg, S. L., Wassenaar, L. I., Welker, J. M., & Bowen, G. J. (2014). Contrasting assignment of migratory organisms to geographic origins using long-term versus year-specific precipitation isotope maps. Methods in Ecology and Evolution, 5, 891-900. https://doi.org/10.1111/2041-210X.12229
Vapnik, V. N. (1998). Statistical learning theory. Wiley.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Springer.
Wadleigh, M. A., & Blake, D. M. (1999). Tracing sources of atmospheric Sulphur using epiphytic lichens. Environmental Pollution, 106, 265-271. https://doi.org/10.1016/S0269-7491(99)00114-1
West, J. B., Bowen, G. J., Dawson, T. E., & Tu, K. P. (2010). Isoscapes. Springer.
Wilson, S., LaDeu, S. L., Tøttrup, A. P., & Marra, P. P. (2011). Range-wide effects of breeding- and nonbreeding-season climate on the abundance of a Neotropical migrant songbird. Ecology, 92(9), 1789-1798. https://doi.org/10.1890/10-1757.1
Zazzo, A., Monahan, F. J., Moloney, A. P., Green, S., & Schmidt, O. (2011). Sulphur isotopes in animal hair track distance to sea. Rapid Communications in Mass Spectrometry, 25, 2371-2378. https://doi.org/10.1002/rcm.5131
Zwarts, L., Bijlsma, R. G., van der Kamp, J., & Wymenga, E. (2009). Living on the edge. KNNV Publishing.
The palaeoenvironmental potential of bioarchaeological isotope data