Half-Sandwich Ru(II) and Os(II) Bathophenanthroline Complexes Containing a Releasable Dichloroacetato Ligand

. 2018 Feb 14 ; 23 (2) : . [epub] 20180214

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29443934

We report on the preparation and thorough characterization of cytotoxic half-sandwich complexes [Ru(η⁶-pcym)(bphen)(dca)]PF₆ (Ru-dca) and [Os(η⁶-pcym)(bphen)(dca)]PF₆ (Os-dca) containing dichloroacetate(1-) (dca) as the releasable O-donor ligand bearing its own cytotoxicity; pcym = 1-methyl-4-(propan-2-yl)benzene (p-cymene), bphen = 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline). Complexes Ru-dca and Os-dca hydrolyzed in the water-containing media, which led to the dca ligand release (supported by ¹H NMR and electrospray ionization mass spectra). Mass spectrometry studies revealed that complexes Ru-dca and Os-dca do not interact covalently with the model proteins cytochrome c and lysozyme. Both complexes exhibited slightly higher in vitro cytotoxicity (IC50 = 3.5 μM for Ru-dca, and 2.6 μM for Os-dca) against the A2780 human ovarian carcinoma cells than cisplatin (IC50 = 5.9 μM), while their toxicity on the healthy human hepatocytes was found to be IC50 = 19.1 μM for Ru-dca and IC50 = 19.7 μM for Os-dca. Despite comparable cytotoxicity of complexes Ru-dca and Os-dca, both the complexes modified the cell cycle, mitochondrial membrane potential, and mitochondrial cytochrome c release by a different way, as revealed by flow cytometry experiments. The obtained results point out the different mechanisms of action between the complexes.

Zobrazit více v PubMed

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI

Wang J., Wang X., Song Y., Wang J., Zhang C., Chang C., Yan J., Qiu L., Wua M., Guo Z. A platinum anticancer theranostic agent with magnetic targeting potential derived from maghemite nanoparticles. Chem. Sci. 2013;4:2605–2612. doi: 10.1039/c3sc50554e. DOI

Boulikas T. Clinical overview on Lipoplatin: A successful liposomal formulation of cisplatin. Expert Opin. Investig. Drugs. 2009;18:1197–1218. doi: 10.1517/13543780903114168. PubMed DOI

Dhar S., Lippard S.J. Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. USA. 2009;106:22199–22204. doi: 10.1073/pnas.0912276106. PubMed DOI PMC

Yang J., Sun X., Mao W., Sui M., Tang J., Shen Y. Conjugate of Pt(IV)–histone deacetylase inhibitor as a prodrug for cancer chemotherapy. Mol. Pharm. 2012;9:2793–2800. doi: 10.1021/mp200597r. PubMed DOI

Raveendran R., Braude J.P., Wexselblatt E., Novohradsky V., Stuchlikova O., Brabec V., Gandin V., Gibson D. Pt(IV) derivatives of cisplatin and oxaliplatin with phenylbutyrate axial ligands are potent cytotoxic agents that act by several mechanisms of action. Chem. Sci. 2016;7:2381–2391. doi: 10.1039/C5SC04205D. PubMed DOI PMC

Awuah S.G., Zheng Y.R., Bruno P.M., Hemann M.T., Lippard S.J. A Pt(IV) pro-drug preferentially targets indoleamine-2,3-dioxygenase, providing enhanced ovarian cancer immuno-chemotherapy. J. Am. Chem. Soc. 2015;137:14854–14857. doi: 10.1021/jacs.5b10182. PubMed DOI PMC

Zeng L., Gupta P., Chen Y., Wang E., Ji L., Chao H., Chen Z.-S. The development of anticancer ruthenium(II) complexes: From single molecule compounds to nanomaterials. Chem. Soc. Rev. 2017;46:5771–5804. doi: 10.1039/C7CS00195A. PubMed DOI PMC

Hanif M., Babak M.V., Hartinger C.G. Development of anticancer agents: Wizardry with osmium. Drug Discov. Today. 2014;19:1640–1648. doi: 10.1016/j.drudis.2014.06.016. PubMed DOI

Trondl R., Heffeter P., Kowol C.R., Jakupec M.A., Berger W., Keppler B.K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. 2014;5:2925–2932. doi: 10.1039/C3SC53243G. DOI

Morris R.E., Aird R.E., del Socorro Murdoch P., Chen H., Cummings J., Hughes N.D., Parsons S., Parkin A., Boyd G., Jodrell D.I., et al. Inhibition of cancer cell growth by ruthenium(II) arene complexes. J. Med. Chem. 2001;44:3616–3621. doi: 10.1021/jm010051m. PubMed DOI

Peacock A.F.A., Habtemariam A., Fernández R., Walland V., Fabbiani F.P.A., Parsons S., Aird R.E., Jodrell D.I., Sadler P.J. Tuning the reactivity of osmium(II) and ruthenium(II) arene complexes under physiological conditions. J. Am. Chem. Soc. 2006;128:1739–1748. doi: 10.1021/ja055886r. PubMed DOI

Romero-Canelón I., Mos M., Sadler P.J. Enhancement of selectivity of an organometallic anticancer agent by redox modulation. J. Med. Chem. 2015;58:7874–7880. doi: 10.1021/acs.jmedchem.5b00655. PubMed DOI PMC

Soldevila-Barreda J.J., Romero-Canelón I., Habtemariam A., Sadler P.J. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat. Commun. 2015;6:6582. doi: 10.1038/ncomms7582. PubMed DOI PMC

Rhodes T., Twentyman P.R. A study of ethacrynic acid as a potential modifier of melphalan and cisplatin sensitivity in human lung cancer parental and drug-resistant cell lines. Br. J. Cancer. 1992;65:684–690. doi: 10.1038/bjc.1992.145. PubMed DOI PMC

Agonigi G., Riedel T., Gay M.P., Biancalana L., Oñate E., Dyson P.J., Pampaloni G., Păunescu E., Esteruelas M.A., Marchetti F. Arene osmium complexes with ethacrynic acid-modified ligands: Synthesis, characterization, and evaluation of intracellular glutathione S-transferase inhibition and antiproliferative activity. Organometallics. 2016;35:1046–1056. doi: 10.1021/acs.organomet.6b00197. DOI

Madhok B.M., Yeluri S., Perry S.L., Hughes T.A., Jayne D.G. Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br. J. Cancer. 2010;102:1746–1752. doi: 10.1038/sj.bjc.6605701. PubMed DOI PMC

Bonnet S., Archer S.L., Allalunis-Turner J., Haromy A., Beaulieu C., Thompson R., Lee T.C., Lopaschuk G.D., Puttagunta L., Bonnet S., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51. doi: 10.1016/j.ccr.2006.10.020. PubMed DOI

Michelakis E.D., Webster L., Mackey J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer. 2008;99:989–994. doi: 10.1038/sj.bjc.6604554. PubMed DOI PMC

Betanzos-Lara S., Novakova O., Deeth R.J., Pizarro A.M., Clarkson G.J., Liskova B., Brabec V., Sadler P.J., Habtemariam A. Bipyrimidine ruthenium(II) arene complexes: Structure, reactivity and cytotoxicity. J. Biol. Inorg. Chem. 2012;17:1033–1051. doi: 10.1007/s00775-012-0917-9. PubMed DOI

Ortega A.L., Mena S., Estrela J.M. Glutathione in cancer cell death. Cancers. 2011;3:1285–1310. doi: 10.3390/cancers3011285. PubMed DOI PMC

Balendiran G.K., Dabur R., Fraser D. The role of glutathione in cancer. Cell Biochem. Funct. 2004;22:343–352. doi: 10.1002/cbf.1149. PubMed DOI

Salemi G., Gueli M.C., D’Amelio M., Saia V., Mangiapane P., Aridon P., Ragonese P., Lupo I. Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B12 in the acute phase of atherothrombotic stroke. Neurol. Sci. 2009;30:361–363. doi: 10.1007/s10072-009-0090-2. PubMed DOI

Koreeda T., Kochi T., Kakiuchi F. Ruthenium-catalyzed reductive deamination and tandem alkylation of aniline derivatives. J. Organomet. Chem. 2013;741–742:148–152. doi: 10.1016/j.jorganchem.2013.06.001. DOI

Toohey J.I., Cooper A.J.L. Thiosulfoxide (Sulfane) sulfur: New chemistry and new regulatory roles in biology. Molecules. 2014;19:12789–12813. doi: 10.3390/molecules190812789. PubMed DOI PMC

Ferraro G., Messori L., Merlino A. The X-ray structure of the primary adducts formed in the reaction between cisplatin and cytochrome c. Chem. Commun. 2015;51:2559–2561. doi: 10.1039/C4CC09056J. PubMed DOI

Zhang N., Du Y., Cui M., Xing J., Liu Z., Liu S. Probing the interaction of cisplatin with cytochrome c by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2012;84:6206–6212. doi: 10.1021/ac301122w. PubMed DOI

Casini A., Gabbiani C., Michelucci E., Pieraccini G., Moneti G., Dyson P.J., Messori L. Exploring metallodrug-protein interactions by mass spectrometry: Comparisons between platinum coordination complexes and an organometallic ruthenium compound. J. Biol. Inorg. Chem. 2009;14:761–770. doi: 10.1007/s00775-009-0489-5. PubMed DOI

Wang F., Bella J., Parkinson J.A., Sadler P.J. Competitive reactions of a ruthenium arene anticancer complex with histidine, cytochrome c and an oligonucleotide. J. Biol. Inorg. Chem. 2005;10:147–155. doi: 10.1007/s00775-004-0621-5. PubMed DOI

Scolaro C., Chaplin A.B., Hartinger C.G., Bergamo A., Cocchietto M., Keppler B.K., Sava G., Dyson P.J. Tuning the hydrophobicity of ruthenium(II)–arene (RAPTA) drugs to modify uptake, biomolecular interactions and efficacy. Dalton Trans. 2007:5065–5072. doi: 10.1039/b705449a. PubMed DOI

Morais T.S., Santos F.C., Jorge T.F., Côrte-Real L., Madeira P.J.A., Marques F., Robalo M.P., Matos A., Santos I., Garcia M.H. New water-soluble ruthenium(II) cytotoxic complex: Biological activity and cellular distribution. J. Inorg. Biochem. 2014;130:1–14. doi: 10.1016/j.jinorgbio.2013.09.013. PubMed DOI

Battistin F., Scaletti F., Balducci G., Pillozzi S., Arcangeli A., Messori L., Alessio E. Water-soluble Ru(II)- and Ru(III)-halide-PTA complexes (PTA = 1,3,5-triaza-7-phosphaadamantane): Chemical and biological properties. J. Inorg. Biochem. 2016;160:180–188. doi: 10.1016/j.jinorgbio.2016.02.009. PubMed DOI

Casini A., Mastrobuoni G., Ang W.H., Gabbiani C., Pieraccini G., Moneti G., Dyson P.J., Messori L. ESI–MS characterisation of protein adducts of anticancer ruthenium(II)-arene PTA (RAPTA) complexes. ChemMedChem. 2007;2:631–635. doi: 10.1002/cmdc.200600258. PubMed DOI

Sullivan M.P., Groessl M., Meier S.M., Kingston R.L., Goldstone D.C., Hartinger C.G. The metalation of hen egg white lysozyme impacts protein stability as shown by ion mobility mass spectrometry, differential scanning calorimetry, and X-ray crystallography. Chem. Commun. 2017;53:4246–4249. doi: 10.1039/C6CC10150J. PubMed DOI

Cinellu M.A., Maiore L., Manassero M., Casini A., Arca M., Fiebig H.H., Kelter G., Michelucci E., Pieraccini G., Gabbiani C., et al. [Au2(phen2Me)2(μ-O)2](PF6)2, a novel dinuclear gold(III) complex showing excellent antiproliferative properties. ACS Med. Chem. Lett. 2010;1:336–339. doi: 10.1021/ml100097f. PubMed DOI PMC

Serratrice M., Maiore L., Zucca A., Stoccoro S., Landini I., Mini E., Massai L., Ferraro G., Merlino A., Messori L., et al. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives. Dalton Trans. 2016;45:579–590. doi: 10.1039/C5DT02714D. PubMed DOI

Groessl M., Zava O., Dyson P.J. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin. Metallomics. 2011;3:591–599. doi: 10.1039/c0mt00101e. PubMed DOI

Riedl C.A., Flocke L.S., Hejl M., Roller A., Klose M.H.M., Jakupec M.A., Kandioller W., Keppler B.K. Introducing the 4-phenyl-1,2,3-triazole moiety as a versatile scaffold for the development of cytotoxic ruthenium(II) and osmium(II) arene cyclometalates. Inorg. Chem. 2017;56:528–541. doi: 10.1021/acs.inorgchem.6b02430. PubMed DOI

Garrido C., Galluzi L., Brunet M., Puig P.E., Didelot C., Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13:1423–1433. doi: 10.1038/sj.cdd.4401950. PubMed DOI

Ribas V., García-Ruiz C., Fernández-Checa J.C. Glutathione and mitochondria. Front. Pharmacol. 2014;5:151. doi: 10.3389/fphar.2014.00151. PubMed DOI PMC

Kojima H., Endo K., Moriyama H., Tanaka Y., Alnemrii E.S., Slapak C.A., Teicher B., Kufe D., Datta R. Abrogation of mitochondrial cytochrome c release and caspase-3 activation in acquired multidrug resistance. J. Biol. Chem. 1998;273:16647–16650. doi: 10.1074/jbc.273.27.16647. PubMed DOI

Chatterjee S., Kundu S., Bhattacharyya A., Hartinger C.G., Dyson P.J. The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways. J. Biol. Inorg. Chem. 2008;13:1149–1155. doi: 10.1007/s00775-008-0400-9. PubMed DOI

Van Rijt S.H., Romero-Canelón I., Fu Y., Shnyder S.D., Sadler P.J. Potent organometallic osmium compounds induce mitochondria-mediated apoptosis and S-phase cell cycle arrest in A549 non-small cell lung cancer cells. Metallomics. 2014;6:1014–1022. doi: 10.1039/c4mt00034j. PubMed DOI

Rego A.C., Vesce S., Nicholls D.G. The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1-7 neural cells. Cell Death Differ. 2001;8:995–1003. doi: 10.1038/sj.cdd.4400916. PubMed DOI

Gogvadze V., Orrenius S., Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim. Biophys. Acta. 2006;1757:639–647. doi: 10.1016/j.bbabio.2006.03.016. PubMed DOI

Tönnemann J., Risse J., Grote Z., Scopelliti R., Severin K. Efficient and rapid synthesis of chlorido-bridged half-sandwich complexes of ruthenium, rhodium, and iridium by microwave heating. Eur. J. Inorg. Chem. 2013:4558–4562. doi: 10.1002/ejic.201300600. DOI

Coverdale J.P.C., Sanchez-Cano C., Clarkson G.J., Soni R., Wills M., Sadler P.J. Easy to synthesize, robust organo-osmium asymmetric transfer hydrogenation catalysts. Chem. Eur. J. 2015;21:8043–8046. doi: 10.1002/chem.201500534. PubMed DOI PMC

Gottlieb H.E., Kotlyar V., Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 1997;62:7512–7515. doi: 10.1021/jo971176v. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...