Half-Sandwich Ru(II) and Os(II) Bathophenanthroline Complexes Containing a Releasable Dichloroacetato Ligand
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29443934
PubMed Central
PMC6017048
DOI
10.3390/molecules23020420
PII: molecules23020420
Knihovny.cz E-zdroje
- Klíčová slova
- cytotoxicity, dichloroacetate(1–), flow cytometry, half-sandwich, osmium, ruthenium,
- MeSH
- fenantroliny chemie farmakologie MeSH
- komplexní sloučeniny chemie farmakologie MeSH
- kyselina dichloroctová chemie farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- nádory vaječníků farmakoterapie MeSH
- osmium chemie MeSH
- proliferace buněk účinky léků MeSH
- ruthenium chemie MeSH
- uvolňování léčiv MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bathophenanthroline MeSH Prohlížeč
- fenantroliny MeSH
- komplexní sloučeniny MeSH
- kyselina dichloroctová MeSH
- ligandy MeSH
- osmium MeSH
- ruthenium MeSH
We report on the preparation and thorough characterization of cytotoxic half-sandwich complexes [Ru(η⁶-pcym)(bphen)(dca)]PF₆ (Ru-dca) and [Os(η⁶-pcym)(bphen)(dca)]PF₆ (Os-dca) containing dichloroacetate(1-) (dca) as the releasable O-donor ligand bearing its own cytotoxicity; pcym = 1-methyl-4-(propan-2-yl)benzene (p-cymene), bphen = 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline). Complexes Ru-dca and Os-dca hydrolyzed in the water-containing media, which led to the dca ligand release (supported by ¹H NMR and electrospray ionization mass spectra). Mass spectrometry studies revealed that complexes Ru-dca and Os-dca do not interact covalently with the model proteins cytochrome c and lysozyme. Both complexes exhibited slightly higher in vitro cytotoxicity (IC50 = 3.5 μM for Ru-dca, and 2.6 μM for Os-dca) against the A2780 human ovarian carcinoma cells than cisplatin (IC50 = 5.9 μM), while their toxicity on the healthy human hepatocytes was found to be IC50 = 19.1 μM for Ru-dca and IC50 = 19.7 μM for Os-dca. Despite comparable cytotoxicity of complexes Ru-dca and Os-dca, both the complexes modified the cell cycle, mitochondrial membrane potential, and mitochondrial cytochrome c release by a different way, as revealed by flow cytometry experiments. The obtained results point out the different mechanisms of action between the complexes.
Zobrazit více v PubMed
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI
Wang J., Wang X., Song Y., Wang J., Zhang C., Chang C., Yan J., Qiu L., Wua M., Guo Z. A platinum anticancer theranostic agent with magnetic targeting potential derived from maghemite nanoparticles. Chem. Sci. 2013;4:2605–2612. doi: 10.1039/c3sc50554e. DOI
Boulikas T. Clinical overview on Lipoplatin: A successful liposomal formulation of cisplatin. Expert Opin. Investig. Drugs. 2009;18:1197–1218. doi: 10.1517/13543780903114168. PubMed DOI
Dhar S., Lippard S.J. Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. USA. 2009;106:22199–22204. doi: 10.1073/pnas.0912276106. PubMed DOI PMC
Yang J., Sun X., Mao W., Sui M., Tang J., Shen Y. Conjugate of Pt(IV)–histone deacetylase inhibitor as a prodrug for cancer chemotherapy. Mol. Pharm. 2012;9:2793–2800. doi: 10.1021/mp200597r. PubMed DOI
Raveendran R., Braude J.P., Wexselblatt E., Novohradsky V., Stuchlikova O., Brabec V., Gandin V., Gibson D. Pt(IV) derivatives of cisplatin and oxaliplatin with phenylbutyrate axial ligands are potent cytotoxic agents that act by several mechanisms of action. Chem. Sci. 2016;7:2381–2391. doi: 10.1039/C5SC04205D. PubMed DOI PMC
Awuah S.G., Zheng Y.R., Bruno P.M., Hemann M.T., Lippard S.J. A Pt(IV) pro-drug preferentially targets indoleamine-2,3-dioxygenase, providing enhanced ovarian cancer immuno-chemotherapy. J. Am. Chem. Soc. 2015;137:14854–14857. doi: 10.1021/jacs.5b10182. PubMed DOI PMC
Zeng L., Gupta P., Chen Y., Wang E., Ji L., Chao H., Chen Z.-S. The development of anticancer ruthenium(II) complexes: From single molecule compounds to nanomaterials. Chem. Soc. Rev. 2017;46:5771–5804. doi: 10.1039/C7CS00195A. PubMed DOI PMC
Hanif M., Babak M.V., Hartinger C.G. Development of anticancer agents: Wizardry with osmium. Drug Discov. Today. 2014;19:1640–1648. doi: 10.1016/j.drudis.2014.06.016. PubMed DOI
Trondl R., Heffeter P., Kowol C.R., Jakupec M.A., Berger W., Keppler B.K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. 2014;5:2925–2932. doi: 10.1039/C3SC53243G. DOI
Morris R.E., Aird R.E., del Socorro Murdoch P., Chen H., Cummings J., Hughes N.D., Parsons S., Parkin A., Boyd G., Jodrell D.I., et al. Inhibition of cancer cell growth by ruthenium(II) arene complexes. J. Med. Chem. 2001;44:3616–3621. doi: 10.1021/jm010051m. PubMed DOI
Peacock A.F.A., Habtemariam A., Fernández R., Walland V., Fabbiani F.P.A., Parsons S., Aird R.E., Jodrell D.I., Sadler P.J. Tuning the reactivity of osmium(II) and ruthenium(II) arene complexes under physiological conditions. J. Am. Chem. Soc. 2006;128:1739–1748. doi: 10.1021/ja055886r. PubMed DOI
Romero-Canelón I., Mos M., Sadler P.J. Enhancement of selectivity of an organometallic anticancer agent by redox modulation. J. Med. Chem. 2015;58:7874–7880. doi: 10.1021/acs.jmedchem.5b00655. PubMed DOI PMC
Soldevila-Barreda J.J., Romero-Canelón I., Habtemariam A., Sadler P.J. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat. Commun. 2015;6:6582. doi: 10.1038/ncomms7582. PubMed DOI PMC
Rhodes T., Twentyman P.R. A study of ethacrynic acid as a potential modifier of melphalan and cisplatin sensitivity in human lung cancer parental and drug-resistant cell lines. Br. J. Cancer. 1992;65:684–690. doi: 10.1038/bjc.1992.145. PubMed DOI PMC
Agonigi G., Riedel T., Gay M.P., Biancalana L., Oñate E., Dyson P.J., Pampaloni G., Păunescu E., Esteruelas M.A., Marchetti F. Arene osmium complexes with ethacrynic acid-modified ligands: Synthesis, characterization, and evaluation of intracellular glutathione S-transferase inhibition and antiproliferative activity. Organometallics. 2016;35:1046–1056. doi: 10.1021/acs.organomet.6b00197. DOI
Madhok B.M., Yeluri S., Perry S.L., Hughes T.A., Jayne D.G. Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br. J. Cancer. 2010;102:1746–1752. doi: 10.1038/sj.bjc.6605701. PubMed DOI PMC
Bonnet S., Archer S.L., Allalunis-Turner J., Haromy A., Beaulieu C., Thompson R., Lee T.C., Lopaschuk G.D., Puttagunta L., Bonnet S., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51. doi: 10.1016/j.ccr.2006.10.020. PubMed DOI
Michelakis E.D., Webster L., Mackey J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer. 2008;99:989–994. doi: 10.1038/sj.bjc.6604554. PubMed DOI PMC
Betanzos-Lara S., Novakova O., Deeth R.J., Pizarro A.M., Clarkson G.J., Liskova B., Brabec V., Sadler P.J., Habtemariam A. Bipyrimidine ruthenium(II) arene complexes: Structure, reactivity and cytotoxicity. J. Biol. Inorg. Chem. 2012;17:1033–1051. doi: 10.1007/s00775-012-0917-9. PubMed DOI
Ortega A.L., Mena S., Estrela J.M. Glutathione in cancer cell death. Cancers. 2011;3:1285–1310. doi: 10.3390/cancers3011285. PubMed DOI PMC
Balendiran G.K., Dabur R., Fraser D. The role of glutathione in cancer. Cell Biochem. Funct. 2004;22:343–352. doi: 10.1002/cbf.1149. PubMed DOI
Salemi G., Gueli M.C., D’Amelio M., Saia V., Mangiapane P., Aridon P., Ragonese P., Lupo I. Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B12 in the acute phase of atherothrombotic stroke. Neurol. Sci. 2009;30:361–363. doi: 10.1007/s10072-009-0090-2. PubMed DOI
Koreeda T., Kochi T., Kakiuchi F. Ruthenium-catalyzed reductive deamination and tandem alkylation of aniline derivatives. J. Organomet. Chem. 2013;741–742:148–152. doi: 10.1016/j.jorganchem.2013.06.001. DOI
Toohey J.I., Cooper A.J.L. Thiosulfoxide (Sulfane) sulfur: New chemistry and new regulatory roles in biology. Molecules. 2014;19:12789–12813. doi: 10.3390/molecules190812789. PubMed DOI PMC
Ferraro G., Messori L., Merlino A. The X-ray structure of the primary adducts formed in the reaction between cisplatin and cytochrome c. Chem. Commun. 2015;51:2559–2561. doi: 10.1039/C4CC09056J. PubMed DOI
Zhang N., Du Y., Cui M., Xing J., Liu Z., Liu S. Probing the interaction of cisplatin with cytochrome c by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2012;84:6206–6212. doi: 10.1021/ac301122w. PubMed DOI
Casini A., Gabbiani C., Michelucci E., Pieraccini G., Moneti G., Dyson P.J., Messori L. Exploring metallodrug-protein interactions by mass spectrometry: Comparisons between platinum coordination complexes and an organometallic ruthenium compound. J. Biol. Inorg. Chem. 2009;14:761–770. doi: 10.1007/s00775-009-0489-5. PubMed DOI
Wang F., Bella J., Parkinson J.A., Sadler P.J. Competitive reactions of a ruthenium arene anticancer complex with histidine, cytochrome c and an oligonucleotide. J. Biol. Inorg. Chem. 2005;10:147–155. doi: 10.1007/s00775-004-0621-5. PubMed DOI
Scolaro C., Chaplin A.B., Hartinger C.G., Bergamo A., Cocchietto M., Keppler B.K., Sava G., Dyson P.J. Tuning the hydrophobicity of ruthenium(II)–arene (RAPTA) drugs to modify uptake, biomolecular interactions and efficacy. Dalton Trans. 2007:5065–5072. doi: 10.1039/b705449a. PubMed DOI
Morais T.S., Santos F.C., Jorge T.F., Côrte-Real L., Madeira P.J.A., Marques F., Robalo M.P., Matos A., Santos I., Garcia M.H. New water-soluble ruthenium(II) cytotoxic complex: Biological activity and cellular distribution. J. Inorg. Biochem. 2014;130:1–14. doi: 10.1016/j.jinorgbio.2013.09.013. PubMed DOI
Battistin F., Scaletti F., Balducci G., Pillozzi S., Arcangeli A., Messori L., Alessio E. Water-soluble Ru(II)- and Ru(III)-halide-PTA complexes (PTA = 1,3,5-triaza-7-phosphaadamantane): Chemical and biological properties. J. Inorg. Biochem. 2016;160:180–188. doi: 10.1016/j.jinorgbio.2016.02.009. PubMed DOI
Casini A., Mastrobuoni G., Ang W.H., Gabbiani C., Pieraccini G., Moneti G., Dyson P.J., Messori L. ESI–MS characterisation of protein adducts of anticancer ruthenium(II)-arene PTA (RAPTA) complexes. ChemMedChem. 2007;2:631–635. doi: 10.1002/cmdc.200600258. PubMed DOI
Sullivan M.P., Groessl M., Meier S.M., Kingston R.L., Goldstone D.C., Hartinger C.G. The metalation of hen egg white lysozyme impacts protein stability as shown by ion mobility mass spectrometry, differential scanning calorimetry, and X-ray crystallography. Chem. Commun. 2017;53:4246–4249. doi: 10.1039/C6CC10150J. PubMed DOI
Cinellu M.A., Maiore L., Manassero M., Casini A., Arca M., Fiebig H.H., Kelter G., Michelucci E., Pieraccini G., Gabbiani C., et al. [Au2(phen2Me)2(μ-O)2](PF6)2, a novel dinuclear gold(III) complex showing excellent antiproliferative properties. ACS Med. Chem. Lett. 2010;1:336–339. doi: 10.1021/ml100097f. PubMed DOI PMC
Serratrice M., Maiore L., Zucca A., Stoccoro S., Landini I., Mini E., Massai L., Ferraro G., Merlino A., Messori L., et al. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives. Dalton Trans. 2016;45:579–590. doi: 10.1039/C5DT02714D. PubMed DOI
Groessl M., Zava O., Dyson P.J. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin. Metallomics. 2011;3:591–599. doi: 10.1039/c0mt00101e. PubMed DOI
Riedl C.A., Flocke L.S., Hejl M., Roller A., Klose M.H.M., Jakupec M.A., Kandioller W., Keppler B.K. Introducing the 4-phenyl-1,2,3-triazole moiety as a versatile scaffold for the development of cytotoxic ruthenium(II) and osmium(II) arene cyclometalates. Inorg. Chem. 2017;56:528–541. doi: 10.1021/acs.inorgchem.6b02430. PubMed DOI
Garrido C., Galluzi L., Brunet M., Puig P.E., Didelot C., Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13:1423–1433. doi: 10.1038/sj.cdd.4401950. PubMed DOI
Ribas V., García-Ruiz C., Fernández-Checa J.C. Glutathione and mitochondria. Front. Pharmacol. 2014;5:151. doi: 10.3389/fphar.2014.00151. PubMed DOI PMC
Kojima H., Endo K., Moriyama H., Tanaka Y., Alnemrii E.S., Slapak C.A., Teicher B., Kufe D., Datta R. Abrogation of mitochondrial cytochrome c release and caspase-3 activation in acquired multidrug resistance. J. Biol. Chem. 1998;273:16647–16650. doi: 10.1074/jbc.273.27.16647. PubMed DOI
Chatterjee S., Kundu S., Bhattacharyya A., Hartinger C.G., Dyson P.J. The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways. J. Biol. Inorg. Chem. 2008;13:1149–1155. doi: 10.1007/s00775-008-0400-9. PubMed DOI
Van Rijt S.H., Romero-Canelón I., Fu Y., Shnyder S.D., Sadler P.J. Potent organometallic osmium compounds induce mitochondria-mediated apoptosis and S-phase cell cycle arrest in A549 non-small cell lung cancer cells. Metallomics. 2014;6:1014–1022. doi: 10.1039/c4mt00034j. PubMed DOI
Rego A.C., Vesce S., Nicholls D.G. The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1-7 neural cells. Cell Death Differ. 2001;8:995–1003. doi: 10.1038/sj.cdd.4400916. PubMed DOI
Gogvadze V., Orrenius S., Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim. Biophys. Acta. 2006;1757:639–647. doi: 10.1016/j.bbabio.2006.03.016. PubMed DOI
Tönnemann J., Risse J., Grote Z., Scopelliti R., Severin K. Efficient and rapid synthesis of chlorido-bridged half-sandwich complexes of ruthenium, rhodium, and iridium by microwave heating. Eur. J. Inorg. Chem. 2013:4558–4562. doi: 10.1002/ejic.201300600. DOI
Coverdale J.P.C., Sanchez-Cano C., Clarkson G.J., Soni R., Wills M., Sadler P.J. Easy to synthesize, robust organo-osmium asymmetric transfer hydrogenation catalysts. Chem. Eur. J. 2015;21:8043–8046. doi: 10.1002/chem.201500534. PubMed DOI PMC
Gottlieb H.E., Kotlyar V., Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 1997;62:7512–7515. doi: 10.1021/jo971176v. PubMed DOI
Chemistry towards Biology-Instruct: Snapshot