• This record comes from PubMed

Pan European Phenological database (PEP725): a single point of access for European data

. 2018 Jun ; 62 (6) : 1109-1113. [epub] 20180218

Language English Country United States Media print-electronic

Document type Journal Article, Review

Links

PubMed 29455297
DOI 10.1007/s00484-018-1512-8
PII: 10.1007/s00484-018-1512-8
Knihovny.cz E-resources

The Pan European Phenology (PEP) project is a European infrastructure to promote and facilitate phenological research, education, and environmental monitoring. The main objective is to maintain and develop a Pan European Phenological database (PEP725) with an open, unrestricted data access for science and education. PEP725 is the successor of the database developed through the COST action 725 "Establishing a European phenological data platform for climatological applications" working as a single access point for European-wide plant phenological data. So far, 32 European meteorological services and project partners from across Europe have joined and supplied data collected by volunteers from 1868 to the present for the PEP725 database. Most of the partners actively provide data on a regular basis. The database presently holds almost 12 million records, about 46 growing stages and 265 plant species (including cultivars), and can be accessed via http://www.pep725.eu/ . Users of the PEP725 database have studied a diversity of topics ranging from climate change impact, plant physiological question, phenological modeling, and remote sensing of vegetation to ecosystem productivity.

See more in PubMed

Basler D (2016) Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric For Meteorol 217:10–21 DOI

Bussel LGJ, Stehfest E, Siebert S, Müller C, Ewert F (2015) Simulation of the phenological development of wheat and maize at the global scale. Glob Ecol Biogeogr 24(9):1018–1029 DOI

Chen M, Melaas EK, Gray JM, Friedl MA, Richardson AD (2016) A new seasonal-deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and water cycling under future climate scenarios. Glob Chang Biol 22(11):3675–3688 DOI

Cook BI, Wolkovich EM, Davies TJ, Ault TR, Betancourt JL, Allen JM, Bolmgren K, Cleland EE, Crimmins TM, Kraft NJ, Lancaster LT (2012) Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15(8):1283–1294 DOI

Crabbe RA, Dash J, Rodriguez-Galiano VF, Janous D, Pavelka M, Marek MV (2016) Extreme warm temperatures alter forest phenology and productivity in Europe. Sci Total Environ 563:486–495 DOI

Delpierre N, Guillemot J, Dufrêne E, Cecchini S, Nicolas M (2017) Tree phenological ranks repeat from year to year and correlate with growth in temperate deciduous forests. Agric For Meteorol 234:1–10 DOI

Dierenbach J, Badeck F-W, Schaber J (2013) The plant phenological online database (PPODB): an online database for long-term phenological data. Int J Biometeorol 57:805–812 DOI

Demaree GR, Rutishauser T (2011) From “periodical observations” to “anthochronology” and “phenology”—the scienctific debate between Adolphe Quetelet and Charles Morren on the origin of the word “phenology”. Int J Biometeorol 55:753–761 DOI

Duputié A, Rutschmann A, Ronce O, Chuine I (2015) Phenological plasticity will not help all species adapt to climate change. Glob Chang Biol 21(8):3062–3073 DOI

Fitter AH, Fitter RSR, Harris ITB, Williamson MH (1995) Relationship between 1st flowering date and temperature in the flora of a locality in Central England. Funct Ecol 9:55–60 DOI

Fu YH, Piao S, Op de Beeck M, Cong N, Zhao H, Zhang Y, Menzel A, Janssens IA (2014a) Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob Ecol Biogeogr 23:1255–1263 DOI

Fu YS, Campioli M, Vitasse Y, De Boeck HJ, Van den Berge J, Abdelgawad H, Asard H, Piao S, Deckmyn G, Janssens IA (2014b) Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc Natl Acad Sci U S A 111(20):7355–7360 DOI

Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y (2015a) Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107 DOI

Fu YH, Piao S, Vitasse Y, Zhao H, De Boeck HJ, Liu Q, Yang H, Weber U, Hänninen H, Janssens IA (2015b) Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Glob Chang Biol 21(7):2687–2697 DOI

Fraga H, García de Cortázar Atauri I, Malheiro AC, Santos JA (2016) Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob Chang Biol 22(11):3774–3788 DOI

Gonsamo A, Chen JM (2016) Circumpolar vegetation dynamics product for global change study. Remote Sens Environ 182:13–26 DOI

Guan BT (2014) Ensemble empirical mode decomposition for analyzing phenological responses to warming. Agric For Meteorol 194:1–7 DOI

Hamunyela E, Verbesselt J, Roerink G, Herold M (2013) Trends in spring phenology of western European deciduous forests. Remote Sens 5(12):6159–6179 DOI

Jochner S, Sparks TH, Laube J, Menzel A (2016) Can we detect a nonlinear response to temperature in European plant phenology? Int J Biometeorol 60:1551–1561 DOI

Jurkovic A, Hubner T, Koch E, Lipa W, Scheifinger H, Ungersbuck M, Zach-Hermann S (2013) The Pan European Phenological database PEP725: data content and quality. EUMETNET 9th Data management Workshop, 5-8 November. El Escorial, Spain

Koch E, Bruns E, Chmielewski FM, Defila C, Lipa W, Menzel A (2009) Guidelines for plant phenological observations. WMO/TD No. 1484. World Meteorological Organization, Geneva

Lapenis A, Henry H, Vuille M, Mower J (2014) Climatic factors controlling plant sensitivity to warming. Clim Chang 122:723–734 DOI

Linnaeus C (1751) Philosophia Botanica. (English translation by Stephen Freer). Oxford University Press, Stockholm, Amsterdam

Linnaeus C, Bark H (1753) Vernatio arborum. Uppsala

Martínez-Lüscher J, Kizildeniz T, Vučetić V, Dai Z, Luedeling E, van Leeuwen C, Gomès E, Pascual I, Irigoyen JJ, Morales F Delrot S (2016) Sensitivity of grapevine phenology to water availability, temperature and Co2 concentration. Front Environ Sci 4:48. https://doi.org/10.3389/fenvs.2016.00048

Meier U (1997) BBCH-monograph: growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag, Berlin

Mellert KH, Lenoir J, Winter S, Kölling C, Čarni A, Dorado-Liñán I, Gégout JC, Göttlein A, Hornstein D, Jantsch M, Juvan N (2017) Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution. Eur J For Res 1–14. https://doi.org/10.1007/s10342-017-1092-x

Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659 DOI

Menzel A, Sparks T, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976 DOI

Olsson C, Jönsson AM (2014) Process based models not always better than empirical models for simulating budburst of Norway spruce and birch in Europe. Glob Chang Biol 20(11):3492–3507 DOI

Nekovář J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski FE (2008) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels

Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q, Janssens IA, Vicca S, Zeng Z, Jeong SJ, Li Y (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun 6:6911. https://doi.org/10.1038/ncomms7911 DOI

Puppi G (2007) Origin and development of phenology as a science. Ital J Agron 3:24–29

Rodriguez-Galiano VF, Dash J, Atkinson PM (2015) Intercomparison of satellite sensor land surface phenology and ground phenology in Europe. Geophys Res Lett 42:2253–2260 DOI

Sakalli A, Simpson D (2012) Towards the use of dynamic growing seasons in a chemical transport model. Biogeosciences 9(12):5161–5179 DOI

Scheifinger H, Templ B (2016) Is citizen science the recipe for the survival of paper-based phenological networks in Europe? Bioscience 66:533–534 DOI

Schwartz MD (1998) Green-wave phenology. Nature 394:839–840 DOI

Sobrino JA, Julien Y, Sòria G (2013) Phenology estimation from Meteosat second generation data. IEEE J Sel Topics Appl Earth Observ Remote Sens 6:1653–1659 DOI

Tang J, Körner C, Muraoka H, Piao S, Shen M, Thackeray SJ, Yang X (2016) Emerging opportunities and challenges in phenology: a review. Ecosphere 7:e01436 DOI

Verger A, Filella I, Baret F, Peñuelas J (2016) Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sens Environ 178:1–14 DOI

Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J For Res 132:1–8 DOI

Wang T, Ottlé C, Peng S, Janssens IA, Lin X, Poulter B, Yue C, Ciais P (2014) The influence of local spring temperature variance on temperature sensitivity of spring phenology. Glob Chang Biol 20:1473–1480 DOI

Wang C, Tang Y, Chen J (2016) Plant phenological synchrony increases under rapid within-spring warming. Sci Rep 6:25460. https://doi.org/10.1038/srep25460

Wang H, Rutishauser T, Tao Z, Zhong S, Ge Q, Dai J (2017) Impacts of global warming on phenology of spring leaf unfolding remain stable in the long run. Int J Biometeorol 61:287–292 DOI

Zust A, Susnik A, Habic B (2006) Data quality control procedures within the common European phenological data platform COST 725. Proceedings of the EMS-Sixth European Conference on Applied Climatology ECAC 2006, 4–8 September, Ljubljana, Slovenia

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...