Antimicrobial Peptides for Topical Treatment of Osteomyelitis and Implant-Related Infections: Study in the Spongy Bone
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29462909
PubMed Central
PMC5874716
DOI
10.3390/ph11010020
PII: ph11010020
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial peptides, bone cement, femur heads, implant-related infections, osteomyelitis,
- Publikační typ
- časopisecké články MeSH
We examined the benefits of short linear α-helical antimicrobial peptides (AMPs) invented in our laboratory for treating bone infection and preventing microbial biofilm formation on model implants due to causative microorganisms of osteomyelitis. For this purpose, we introduced a model of induced osteomyelitis that utilizes human femur heads obtained from the hospital after their replacement with artificial prostheses. We found that the focus of the infection set up in the spongy part of this bone treated with AMP-loaded calcium phosphate cement was eradicated much more effectively than was the focus treated with antibiotics such as vancomycin or gentamicin loaded into the same cement. This contradicts the minimum inhibitory concentrations (MIC) values of AMPs and antibiotics against some bacterial strains obtained in standard in vitro assays. The formation of microbial biofilm on implants made from poly(methylmethacrylate)-based bone cement loaded with AMP was evaluated after the implants' removal from the infected bone sample. AMPs loaded in such model implants prevented microbial adhesion and subsequent formation of bacterial biofilm on their surface. Biofilms did form, on the other hand, on control implants made from the plain cement when these were implanted into the same infected bone sample. These results of the experiments performed in human bone tissue highlight the clinical potential of antimicrobial peptides for use in treating and preventing osteomyelitis caused by resistant pathogens.
Zobrazit více v PubMed
Birt M.C., Anderson D.W., Toby E.B., Wang J. Osteomyelitis: Recent advances in pathophysiology and therapeutic strategies. J. Orthop. 2017;14:45–52. doi: 10.1016/j.jor.2016.10.004. PubMed DOI PMC
Nandi S.K., Bandyopadhyay S., Das P., Samanta I., Mukherjee P., Roy S., Kundu B. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol. Adv. 2016;34:1305–1317. doi: 10.1016/j.biotechadv.2016.09.005. PubMed DOI
Winkler H., Haiden P. Treatment of chronic bone infection. Oper. Tech. Orthop. 2016;26:2–11. doi: 10.1053/j.oto.2016.01.002. DOI
Hanssen A.D., Osmon D.R., Patel R. Local antibiotic delivery systems: Where are we and where are we going? Clin. Orthop. Relat. Res. 2005;437:111–114. doi: 10.1097/01.blo.0000175122.50804.ce. PubMed DOI
Webb N.D., McCanless J.D., Courtney H.S., Bumgardner J.D., Haggard W.O. Daptomycin eluted from calcium sulfate appears effective against Staphylococcus. Clin. Orthop. Relat. Res. 2008;466:1383–1387. doi: 10.1007/s11999-008-0245-0. PubMed DOI PMC
Gálvez-López R., Peña-Monje A., Antelo-Lorenzo R., Guardia-Olmedo J., Moliz J., Hernández-Quero J., Parra-Ruiz J. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement. Diagn. Microbiol. Infect. Dis. 2014;78:70–74. doi: 10.1016/j.diagmicrobio.2013.09.014. PubMed DOI
Jackson J., Leung F., Duncan C., Mugabe C., Burt H. The use of bone cement for the localized, controlled release of the antibiotics vancomycin, linezolid, or fusidic acid: Effect of additives on drug release rates and mechanical strength. Drug Deliv. Transl. Res. 2011;1:121–131. doi: 10.1007/s13346-011-0015-5. PubMed DOI
Webb J.C.J., Spencer R.F. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J. Bone Jt. Surg. Br. 2007;89:851–857. doi: 10.1302/0301-620X.89B7.19148. PubMed DOI
Rouse M.S., Piper K.E., Jacobson M., Jacofsky D.J., Steckelberg J.M., Patel R. Daptomycin treatment of Staphylococcus aureus experimental chronic osteomyelitis. J. Antimicrob. Chemother. 2006;57:301–305. doi: 10.1093/jac/dki435. PubMed DOI
Campoccia D., Montanaro L., Speziale P., Arciola C.R. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials. 2010;31:6363–6377. doi: 10.1016/j.biomaterials.2010.05.005. PubMed DOI
Arciola C.R., Campoccia D., Ehrlich G.D., Montanaro L. Biofilm-based implant infections in orthopaedics. Adv. Exp. Med. Biol. 2015;830:29–46. PubMed
Romano C.L., Toscano M., Romano D., Drago L. Antibiofilm agents and implant-related infections in orthopaedics: Where are we? J. Chemother. 2013;25:67–80. doi: 10.1179/1973947812Y.0000000045. PubMed DOI
Ribeiro M., Monteiro F.J., Ferraz M.P. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomaterials. 2012;2:176–194. doi: 10.4161/biom.22905. PubMed DOI PMC
Brogden N.K., Brogden K.A. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int. J. Antimicrob. Agents. 2011;38:217–225. doi: 10.1016/j.ijantimicag.2011.05.004. PubMed DOI PMC
Baltzer S.A., Brown M.H. Antimicrobial peptides—Promising alternatives to conventional antibiotics. J. Mol. Microbiol. Biotechnol. 2011;20:228–235. doi: 10.1159/000331009. PubMed DOI
Mishra B., Reiling S., Zarena D., Wang G. Host defense antimicrobial peptides as antibiotics: Design and application strategies. Curr. Opin. Chem. Biol. 2017;38:87–96. doi: 10.1016/j.cbpa.2017.03.014. PubMed DOI PMC
Yeaman M.R., Yount N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003;55:27–55. doi: 10.1124/pr.55.1.2. PubMed DOI
Nguyen L.T., Haney E.F., Vogel H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–472. doi: 10.1016/j.tibtech.2011.05.001. PubMed DOI
Zhang L., Gallo R.L. Antimicrobial peptides. Curr. Biol. 2016;26:R14–R19. doi: 10.1016/j.cub.2015.11.017. PubMed DOI
Mishra B., Wang G. Individual and combined effects of engineered peptides and antibiotics on Pseudomonas aeruginosa biofilms. Pharmaceuticals. 2017;10:58. doi: 10.3390/ph10030058. PubMed DOI PMC
Faber C., Stallmann H.P., Lyaruu D.M., de Blieck J.M.A., Bervoets T.J.M., van Nieuw Amerongen A., Wuisman P.I.J.M. Release of antimicrobial peptide Dhvar-5 from polymethylmethacrylate beads. J. Antimicrob. Chemother. 2003;51:1359–1364. doi: 10.1093/jac/dkg258. PubMed DOI
Stallmann H.P., Faber C., Bronckers A.L.J.J., van Nieuw Amerongen A., Wuisman P.I.J.M. Osteomyelitis prevention in rabbits using antimicrobial peptide hLF1-11- or gentamicin-containing calcium phosphate cement. J. Antimicrob. Chemother. 2004;54:472–476. doi: 10.1093/jac/dkh346. PubMed DOI
Faber C., Hoogendoorn R.J.W., Stallmann H.P., Lyaruu D.M., van Nieuw Amerongen A., Wuisman P.I.J.M. In vivo comparison of Dhvar-5 and gentamicin in MRSA osteomyelitis prevention model. J. Antimicrob. Chemother. 2004;54:1078–1084. doi: 10.1093/jac/dkh441. PubMed DOI
Faber C., Stallmann H.P., Lyaruu D.M., Joosten U., von Eiff C., van Nieuw Amerongen A., Wuisman P.I.J.M. Comparable efficacies of the antimicrobial peptide human lactoferrin 1-11 and gentamicin in a chronic methicillin-resistant Staphylococcus aureus osteomyelitis model. Antimicrob. Agents Chemother. 2005;49:2438–2444. doi: 10.1128/AAC.49.6.2438-2444.2005. PubMed DOI PMC
Dijkshoorn L., Brouwer C.P.J.M., Bogaards S.J.P., Nemec A., van den Broek P.J., Nibbering P.H. The synthetic N-terminal peptide of human lactoferin, hLF(1-11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2004;48:4919–4921. doi: 10.1128/AAC.48.12.4919-4921.2004. PubMed DOI PMC
De Breij A., Riool M., Kwakman P.H.S., de Boer L., Cordfunke R.A., Drijfhout J.W., Cohen O., Emanuel N., Zaat S.A.J., Nibbering P.H., et al. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J. Control. Release. 2016;222:1–8. doi: 10.1016/j.jconrel.2015.12.003. PubMed DOI
Laverty G., Gorman S.P., Gilmore B.F. Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J. Biomed. Mater. Res. Part A. 2012;100A:1803–1814. doi: 10.1002/jbm.a.34132. PubMed DOI
Čeřovský V., Buděšínský M., Hovorka O., Cvačka J., Voburka Z., Slaninová J., Borovičková L., Fučík V., Bednárová L., Votruba I., et al. Lasioglossins: Three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae) ChemBioChem. 2009;10:2089–2099. doi: 10.1002/cbic.200900133. PubMed DOI
Monincová L., Buděšínský M., Slaninová J., Hovorka O., Cvačka J., Voburka Z., Fučík V., Borovičková L., Bednárová L., Straka J., et al. Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids. 2010;39:763–775. doi: 10.1007/s00726-010-0519-1. PubMed DOI
Wang G., Li X., Wang Z. APD2: The updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 2009;37:D933–D937. doi: 10.1093/nar/gkn823. PubMed DOI PMC
Nešuta O., Buděšínský M., Hadravová R., Monincová L., Humpoličková J., Čeřovský V. How proteases from Enterococcus faecalis contribute to its resistance to short α-helical antimicrobial peptides. Pathog. Dis. 2017;75:ftx091. doi: 10.1093/femspd/ftx091. PubMed DOI
Wu Z., Ericksen B., Tucker K., Lubkowski J., Lu W. Synthesis and characterization of human α-defensins 4-6. J. Pept. Res. 2004;64:118–125. doi: 10.1111/j.1399-3011.2004.00179.x. PubMed DOI
Anderson R.J., Groundwater P.W., Todd A., Worsley A.J. Antibacterial Agents: Chemistry, Mode of Action, Mechanism of Resistance and Clinical Applications. 1st ed. John Wiley & Sons, Ltd.; Chichester, UK: 2012. pp. 308–313. Chapters 5.2.4–5.2.6.
Anderson R.J., Groundwater P.W., Todd A., Worsley A.J. Antibacterial Agents: Chemistry, Mode of Action, Mechanism of Resistance and Clinical Applications. 1st ed. John Wiley & Sons, Ltd.; Chichester, UK: 2012. pp. 158–161. Chapters 4.1.4–4.1.6.
Melicherčík P., Čeřovský V., Nešuta O., Jahoda D., Landor I., Ballay R., Fulín P. Testing the efficacy of antimicrobial peptides in the topical treatment of induced osteomyelitis in rats. Folia Microbiol. 2018;63:97–104. doi: 10.1007/s12223-017-0540-9. PubMed DOI
Hardouin P., Pansini V., Cortet B. Bone marrow fat. Jt. Bone Spine. 2014;81:313–319. doi: 10.1016/j.jbspin.2014.02.013. PubMed DOI