Polymer-Antimicrobial Peptide Constructs with Tailored Drug-Release Behavior
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-04790S
Czech Science Foundation
PubMed
36839728
PubMed Central
PMC9960778
DOI
10.3390/pharmaceutics15020406
PII: pharmaceutics15020406
Knihovny.cz E-zdroje
- Klíčová slova
- HPMA copolymers, antimicrobial peptides, bacteria, drug delivery,
- Publikační typ
- časopisecké články MeSH
Microbial resistance is one of the main problems of modern medicine. Recently, antimicrobial peptides have been recognized as a novel approach to overcome the microbial resistance issue, nevertheless, their low stability, toxicity, and potential immunogenic response in biological systems have limited their clinical application. Herein, we present the design, synthesis, and preliminary biological evaluation of polymer-antibacterial peptide constructs. The antimicrobial GKWMKLLKKILK-NH2 oligopeptide (PEP) derived from halictine, honey bee venom, was bound to a polymer carrier via various biodegradable spacers employing the pH-sensitive or enzymatically-driven release and reactivation of the PEP's antimicrobial activity. The antibacterial properties of the polymer-PEP constructs were assessed by a determination of the minimum inhibitory concentrations, followed by fluorescence and transmission electron microscopy. The PEP exerted antibacterial activity against both, gram-positive and negative bacteria, via disruption of the bacterial cell wall mechanism. Importantly, PEP partly retained its antibacterial efficacy against Staphylococcus epidermidis, Escherichia coli, and Acinetobacter baumanii even though it was bound to the polymer carrier. Indeed, to observe antibacterial activity similar to the free PEP, the peptide has to be released from the polymer carrier in response to a pH decrease. Enzymatically-driven release and reactivation of the PEP antimicrobial activity were recognized as less effective when compared to the pH-sensitive release of PEP.
Zobrazit více v PubMed
Seaworth B.J., Griffith D.E. Therapy of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis. Microbiol. Spectr. 2017;5:1–28. doi: 10.1128/microbiolspec.TNMI7-0042-2017. PubMed DOI PMC
World Health Organization . Global Tuberculosis Report 2021. World Health Organization; Geneva, Switzerland: 2021.
Mintz P.D. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed Thereby Highlighting the Requirement for Further Vigilance for Platelet Transfusions. World Health Organization; Geneva, Switzerland: 2017. pp. 3–4.
Asokan G., Ramadhan T., Ahmed E., Sanad H. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Med. J. 2019;34:184–193. doi: 10.5001/omj.2019.37. PubMed DOI PMC
Griffith D.E., Aksamit T.R. Understanding nontuberculous mycobacterial lung disease: It’s been a long time coming. F1000Research. 2016;5:2797–2805. doi: 10.12688/f1000research.9272.1. PubMed DOI PMC
Cândido P.H.C., De Nunes L.S., Marques E.A., Folescu T.W., Coelho F.S., De Moura V.C.N., Da Silva M.G., Gomes K.M., Lourenço M.C.D.S., Aguiar F.S., et al. Multidrug-resistant nontuberculous mycobacteria isolated from cystic fibrosis patients. J. Clin. Microbiol. 2014;52:2990–2997. doi: 10.1128/JCM.00549-14. PubMed DOI PMC
Zasloff M. Antimicrobial peptides of multicellularorganisms. Nature. 2002;415:389–395. doi: 10.1038/415389a. PubMed DOI
Bulet P., Stöcklin R., Menin L. Anti-microbial peptides: From invertebrates to vertebrates. Immunol. Rev. 2004;198:169–184. doi: 10.1111/j.0105-2896.2004.0124.x. PubMed DOI
Hale J.D.F., Hancock R.E.W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti. Infect. Ther. 2007;5:951–959. doi: 10.1586/14787210.5.6.951. PubMed DOI
Steckbeck J.D., Deslouches B., Montelaro R.C. Antimicrobial peptides: New drugs for bad bugs? Expert Opin. Biol. Ther. 2014;14:11–14. doi: 10.1517/14712598.2013.844227. PubMed DOI PMC
Vicent M.J., Manzanaro S., de la Fuente J.A., Duncan R. HPMA copolymer-1,5-diazaanthraquinone conjugates as novel anticancer therapeutics. J. Drug Target. 2004;12:503–515. doi: 10.1080/10611860400011901. PubMed DOI
Fox J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol. 2013;31:379–382. doi: 10.1038/nbt.2572. PubMed DOI
Monincová L., Buděšínsky M., Slaninová J., Oldřich Hovorka O., Cvačka J., Voburka Z., Fučík V., Borovičková L., Bednárová L., Straka J., et al. Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids. 2010;39:763–775. doi: 10.1007/s00726-010-0519-1. PubMed DOI
Melicherčík P., Nešuta O., Čeřovský V. Antimicrobial Peptides for Topical Treatment of Osteomyelitis and Implant-Related Infections: Study in the Spongy Bone. Pharmaceuticals. 2018;11:20. doi: 10.3390/ph11010020. PubMed DOI PMC
Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Letai A. S63845, an MCL-1 Selective BH3 Mimetic: Another Arrow in Our Quiver. Cancer Cell. 2016;30:834–835. doi: 10.1016/j.ccell.2016.11.016. PubMed DOI
Subr V., Etrych T., Ulbrich K., Hirano T., Kondo T., Todoroki T., Jelinkova M., Rihova B. Synthesis and properties of poly{[}N-(2-hydroxypropyl) methacrylamide] conjugates of superoxide dismutase. J. Bioact. Compat. Polym. 2002;17:105–122.
Tang Z., Ma Q., Chen X., Chen T., Ying Y., Xi X., Wang L., Ma C., Shaw C., Zhou M. Recent Advances and Challenges in Nanodelivery Systems for Antimicrobial Peptides (AMPs) Antibiotics. 2021;10:990. doi: 10.3390/antibiotics10080990. PubMed DOI PMC
Cayot P., Tainturier G. The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: A reexamination. Anal. Biochem. 1997;249:184–200. doi: 10.1006/abio.1997.2161. PubMed DOI
Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B. Polymeric drugs based on conjugates of synthetic and natural macromolecules. I. Synthesis and physico-chemical characterisation. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI
Pola R., Parnica J., Zuska K., Böhmová E., Filipová M., Pechar M., Pankrác J., Mucksová J., Kalina J., Trefil P., et al. Oligopeptide-targeted polymer nanoprobes for fluorescence-guided endoscopic surgery. Multifunct. Mater. 2019;2:024004. doi: 10.1088/2399-7532/ab159e. DOI
Chytil P., Etrych T., Kříž J., Subr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Pola R., Janoušková O., Etrych T. The pH-Dependent and Enzymatic Release of Cytarabine from Hydrophilic Polymer Conjugates. Physiol. Res. 2016;65:225–232. doi: 10.33549/physiolres.933424. PubMed DOI
Perrier S., Takolpuckdee P., Westwood J., Lewis D.M. Versatile Chain Transfer Agents for Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization to Synthesize Functional Polymeric Architectures. Macromolecules. 2004;37:2709–2717. doi: 10.1021/ma035468b. DOI
Chytil P., Koziolová E., Etrych T., Ulbrich K. HPMA Copolymer–Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2018;18:1700209. doi: 10.1002/mabi.201700209. PubMed DOI
Kopeček J., Kopečková P. HPMA copolymers: Origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC
Randárová E., Kudláčová J., Etrych T. HPMA copolymer-antibody constructs in neoplastic treatment: An overview of therapeutics, targeted diagnostics, and drug-free systems. J. Control. Release. 2020;325:304–322. doi: 10.1016/j.jconrel.2020.06.040. PubMed DOI
Zdzalik M., Karim A.Y., Wolski K., Buda P., Wojcik K., Brueggemann S., Wojciechowski P., Eick S., Calander A.-M., Jonsson I.-M., et al. Prevalence of genes encoding extracellular proteases in Staphylococcus aureus—Important targets triggering immune response in vivo. FEMS Immunol. Med. Microbiol. 2012;66:220–229. doi: 10.1111/j.1574-695X.2012.01005.x. PubMed DOI
Kalińska M., Kantyka T., Greenbaum D.C., Larsen K.S., Władyka B., Jabaiah A., Bogyo M., Daugherty P.S., Wysocka M., Jaros M., et al. Substrate specificity of Staphylococcus aureus cysteine proteases—Staphopains A, B and C. Biochimie. 2012;94:318–327. doi: 10.1016/j.biochi.2011.07.020. PubMed DOI
Pechar M., Pola R., Studenovský M., Bláhová M., Grosmanová E., Dydowiczová A., Filipová M., Islam R., Gao S., Fang J., et al. Polymer nanomedicines with enzymatically triggered activation: A comparative study of in vitro and in vivo anti-cancer efficacy related to the spacer structure. Nanomed. Nanotechnol. Biol. Med. 2022;46:9–12. doi: 10.1016/j.nano.2022.102597. PubMed DOI
Volejníková A., Melicherčík P., Nešuta O., Vaňková E., Bednárová L., Rybáček J., Čeřovský V. Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement. J. Med. Microbiol. 2019;68:961–972. doi: 10.1099/jmm.0.001000. PubMed DOI
Sánchez-Clemente R., Igeño M.I., Población A.G., Guijo M.I., Merchán F., Blasco R. Study of pH Changes in Media during Bacterial Growth of Several Environmental Strains. Proceedings. 2018;2:1297.
Wilhelm M.J., Sharifian Gh. M., Wu T., Li Y., Chang C.-M., Ma J., Dai H.-L. Determination of bacterial surface charge density via saturation of adsorbed ions. Biophys. J. 2021;120:2461–2470. doi: 10.1016/j.bpj.2021.04.018. PubMed DOI PMC
Šálek P., Trousil J., Nováčková J., Hromádková J., Mahun A., Kobera L. Poly [2-(dimethylamino)ethyl methacrylate- co -ethylene dimethacrylate]nanogel by dispersion polymerization for inhibition of pathogenic bacteria. RSC Adv. 2021;11:33461–33470. doi: 10.1039/D1RA06231J. PubMed DOI PMC