Olaparib is effective in combination with, and as maintenance therapy after, first-line endocrine therapy in prostate cancer cells

. 2018 Apr ; 12 (4) : 561-576. [epub] 20180315

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29465803

Grantová podpora
P 26799 Austrian Science Fund FWF - Austria
P 29457 Austrian Science Fund FWF - Austria

A number of prostate cancer (PCa)-specific genomic aberrations (denominated BRCAness genes) have been discovered implicating sensitivity to PARP inhibition within the concept of synthetic lethality. Recent clinical studies show favorable results for the PARP inhibitor olaparib used as single agent for treatment of metastatic castration-resistant PCa. Using 2D and 3D cell culture models mimicking the different treatment and progression stages of PCa, we evaluated a potential use for olaparib in combination with first-line endocrine treatments, androgen deprivation, and complete androgen blockade, and as a maintenance therapy following on from endocrine therapy. We demonstrate that the LNCaP cell line, possessing multiple aberrations in BRCAness genes, is sensitive to olaparib. Additive effects of olaparib combined with endocrine treatments in LNCaP are noted. In contrast, we find that the TMPRSS2:ERG fusion-positive cell lines VCaP and DuCaP do not show signs of synthetic lethality, but are sensitive to cytotoxic effects caused by olaparib. In consequence, additive effects of olaparib with endocrine therapy were not observable in these cell lines, showing the need for synthetic lethality in combination treatment regimens. Additionally, we show that PCa cells remain sensitive to olaparib treatment after initial androgen deprivation implicating a possible use of olaparib as maintenance therapy. In sum, our preclinical data recommend olaparib as a synthetic lethal treatment option in combination or sequenced to first-line endocrine therapy for PCa patients with diagnosed BRCAness.

Zobrazit více v PubMed

Attard G, Reid AHM, Yap TA, Raynaud F, Dowsett M, Settatree S, Barrett M, Parker C, Martins V, Folkerd E et al (2008) Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration‐resistant prostate cancer commonly remains hormone driven. J Clin Oncol 26, 4563–4571. PubMed

van Bokhoven A, Varella‐Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, Nordeen SK, Miller GJ and Lucia MS (2003) Molecular characterization of human prostate carcinoma cell lines. Prostate 57, 205–225. PubMed

Boysen G, Barbieri CE, Prandi D, Blattner M, Chae S‐S, Dahija A, Nataraj S, Huang D, Marotz C, Xu L et al (2015) SPOP mutation leads to genomic instability in prostate cancer. eLife 4. PubMed PMC

Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, Patel S, Wang X, Liang H, Yu J et al (2011) Mechanistic rationale for inhibition of poly(ADP‐ribose) polymerase in ETS gene fusion‐positive prostate cancer. Cancer Cell 19, 664–678. PubMed PMC

Culig Z, Hoffmann J, Erdel M, Eder IE, Hobisch A, Hittmair A, Bartsch G, Utermann G, Schneider MR, Parczyk K et al (1999) Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer 81, 242–251. PubMed PMC

Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui‐Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ et al (2009) Inhibition of poly(ADP‐ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361, 123–134. PubMed

Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S et al (2015) COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res 43, D805–D811. PubMed PMC

Hedayati M, Haffner MC, Coulter JB, Raval RR, Zhang Y, Zhou H, Mian O, Knight EJ, Razavi N, Dalrymple S et al (2016) Androgen deprivation followed by acute androgen stimulation selectively sensitizes AR‐positive prostate cancer cells to ionizing radiation. Clin Cancer Res 22, 3310–3319. PubMed PMC

Hobisch A, Fritzer A, Comuzzi B, Fiechtl M, Malinowska K, Steiner H, Bartsch G and Culig Z (2006) The androgen receptor pathway is by‐passed in prostate cancer cells generated after prolonged treatment with bicalutamide. Prostate 66, 413–420. PubMed

Hussain M, Carducci MA, Slovin S, Cetnar J, Qian J, McKeegan EM, Refici‐Buhr M, Chyla B, Shepherd SP, Giranda VL et al (2014) Targeting DNA repair with combination veliparib (ABT‐888) and temozolomide in patients with metastatic castration‐resistant prostate cancer. Invest New Drugs 32, 904–912. PubMed PMC

Hussain M, Daignault S, Twardowski P, Albany C, Stein MN, Kunju LP, Robinson DR, Cooney KA, Montgomery RB, Antonarakis SE et al (2017) Abiraterone + prednisone (Abi) +/‐ veliparib (Vel) for patients (pts) with metastatic castration‐resistant prostate cancer (CRPC): NCI 9012 updated clinical and genomics data. J Clin Oncol 35(Suppl.); abstr 5001.

Kari V, Mansour WY, Raul SK, Baumgart SJ, Mund A, Grade M, Sirma H, Simon R, Will H, Dobbelstein M et al (2016) Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness. EMBO Rep 17, 1609–1623. PubMed PMC

Kaufman B, Shapira‐Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, Mitchell G, Fried G, Stemmer SM, Hubert A et al (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33, 244–250. PubMed PMC

Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, Sridhara R, Lee E, Tzou A, Philip R et al (2015) FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA‐mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 21, 4257–4261. PubMed

Kogan I, Goldfinger N, Milyavsky M, Cohen M, Shats I, Dobler G, Klocker H, Wasylyk B, Voller M, Aalders T et al (2006) hTERT‐immortalized prostate epithelial and stromal‐derived cells: an authentic in vitro model for differentiation and carcinogenesis. Cancer Res 66, 3531–3540. PubMed

Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott CL, Meier W, Shapira‐Frommer R, Safra T et al (2014) Olaparib maintenance therapy in patients with platinum‐sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15, 852–861. PubMed

Ledermann JA, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott C, Meier W, Shapira‐Frommer R, Safra T et al (2016) Quality of life during olaparib maintenance therapy in platinum‐sensitive relapsed serous ovarian cancer. Br J Cancer 115, 1313–1320. PubMed PMC

Li L, Karanika S, Yang G, Wang J, Park S, Broom BM, Manyam GC, Wu W, Luo Y, Basourakos S et al (2017) Androgen receptor inhibitor‐induced “BRCAness” and PARP inhibition are synthetically lethal for castration‐resistant prostate cancer. Sci Signal 10, pii: eaam7479. PubMed PMC

Lord CJ and Ashworth A (2016) BRCAness revisited. Nat Rev Cancer 16, 110–120. PubMed

Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez‐Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N et al (2015) DNA‐repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373, 1697–1708. PubMed PMC

Mendes‐Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim J‐S, Waldman T, Lord CJ and Ashworth A (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1, 315–322. PubMed PMC

Menear KA, Adcock C, Boulter R, Cockcroft X, Copsey L, Cranston A, Dillon KJ, Drzewiecki J, Garman S, Gomez S et al (2008) 4‐[3‐(4‐cyclopropanecarbonylpiperazine‐1‐carbonyl)‐4‐fluorobenzyl]‐2H‐phthalazin‐1‐one: a novel bioavailable inhibitor of poly(ADP‐ribose) polymerase‐1. J Med Chem 51, 6581–6591. PubMed

Morra F, Merolla F, Napolitano V, Ilardi G, Miro C, Paladino S, Staibano S, Cerrato A and Celetti A (2017) The combined effect of USP7 inhibitors and PARP inhibitors in hormone‐sensitive and castration‐resistant prostate cancer cells. Oncotarget 8, 31815–31829. PubMed PMC

Murai J, Huang SN, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y (2012) Differential trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72, 5588–5599. PubMed PMC

Polkinghorn WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, Arora VK, Yen WF, Cai L, Zheng D et al (2013) Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov 3, 1245–1253. PubMed PMC

Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R et al (2016) Inherited DNA‐repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375, 443–453. PubMed PMC

Reiss KA, Herman JM, Zahurak M, Brade A, Dawson LA, Scardina A, Joffe C, Petito E, Hacker‐Prietz A, Kinders RJ et al (2015) A Phase I study of veliparib (ABT‐888) in combination with low‐dose fractionated whole abdominal radiation therapy in patients with advanced solid malignancies and peritoneal carcinomatosis. Clin Cancer Res 21, 68–76. PubMed PMC

Robinson D, Van Allen EM, Wu Y‐M, Schultz N, Lonigro RJ, Mosquera J‐M, Montgomery B, Taplin ME, Pritchard CC, Attard G et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228. PubMed PMC

Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, Hylands L, Riisnaes R, Forster M, Omlin A et al (2013) The poly(ADP‐ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose‐escalation trial. Lancet Oncol 14, 882–892. PubMed

Schiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL, Liu F, Planck JL, Ravindranathan P, Chinnaiyan AM et al (2012) Dual roles of PARP‐1 promote cancer growth and progression. Cancer Discov 2, 1134–1149. PubMed PMC

Sharrard RM and Maitland NJ (2000) Phenotypic effects of overexpression of the MMAC1 gene in prostate epithelial cells. Br J Cancer 83, 1102–1109. PubMed PMC

Shenoy TR, Boysen G, Wang MY, Xu QZ, Guo W, Koh FM, Wang C, Zhang LZ, Wang Y, Gil V et al (2017) CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error‐prone double‐strand break repair. Ann Oncol, 28, 1495–1507. PubMed PMC

Song H, Hollstein M and Xu Y (2007) p53 gain‐of‐function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9, 573–580. PubMed

Tarish FL, Schultz N, Tanoglidi A, Hamberg H, Letocha H, Karaszi K, Hamdy FC, Granfors T and Helleday T (2015) Castration radiosensitizes prostate cancer tissue by impairing DNA double‐strand break repair. Sci Transl Med 7, 312re11. PubMed

Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith‐Jones PM, Yoo D, Kwon A et al (2009) Development of a second‐generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790. PubMed PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.5903455

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace