Synthesis and Effect of Hierarchically Structured Ag-ZnO Hybrid on the Surface Antibacterial Activity of a Propylene-Based Elastomer Blends

. 2018 Mar 01 ; 11 (3) : . [epub] 20180301

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29494511

In this study, a hybrid Ag-ZnO nanostructured micro-filler was synthesized by the drop technique for used in plastic and medical industry. Furthermore, new antibacterial polymer nanocomposites comprising particles of Ag-ZnO up to 5 wt % and a blend of a thermoplastic polyolefin elastomer (TPO) with polypropylene were prepared using twin screw micro-compounder. The morphology and crystalline-phase structure of the hybrid Ag-ZnO nanostructured microparticles obtained was characterized by scanning electron microscopy and powder X-ray diffractometry. The specific surface area of this filler was investigated by means of nitrogen sorption via the Brunauer-Emmet-Teller method. A scanning electron microscope was used to conduct a morphological study of the polymer nanocomposites. Mechanical and electrical testing showed no adverse effects on the function of the polymer nanocomposites either due to the filler utilized or the given processing conditions, in comparison with the neat polymer matrix. The surface antibacterial activity of the compounded polymer nanocomposites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P, according to ISO 22196:2007 (E). All the materials at virtually every filler-loading level were seen to be efficient against both species of bacteria.

Zobrazit více v PubMed

Shaviv E., Schubert O., Alves-Santos M., Goldoni G., Di Felice R., Vallée F., Del Fatti N., Banin U., Sönnichsen C. Absorption Properties of Metal–Semiconductor Hybrid Nanoparticles. ACS Nano. 2011;5:4712–4719. doi: 10.1021/nn200645h. PubMed DOI

Paul D.R., Robeson L.M. Polymer Nanotechnology: Nanocomposites. Polymer. 2008;49:3187–3204. doi: 10.1016/j.polymer.2008.04.017. DOI

Palza H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015;16:2099–2116. doi: 10.3390/ijms16012099. PubMed DOI PMC

Aricò A.S., Bruce P., Scrosati B., Tarascon J.-M., van Schalkwijk W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005;4:366–377. doi: 10.1038/nmat1368. PubMed DOI

Scholes G.D. Book Review of Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications. J. Am. Chem. Soc. 2008;130:18028. doi: 10.1021/ja809158b. DOI

Bazant P., Kuritka I., Hudecek O., Machovsky M., Mrlik M., Sedlacek T. Microwave-Assisted Synthesis of Ag/ZnO Hybrid Filler, Preparation, and Characterization of Antibacterial Poly(Vinyl Chloride) Composites Made from the Same. Polym. Compos. 2014;35:19–26. doi: 10.1002/pc.22629. DOI

Lu W., Liu G., Gao S., Xing S., Wang J. Tyrosine-Assisted Preparation of Ag/ZnO Nanocomposites with Enhanced Photocatalytic Performance and Synergistic Antibacterial Activities. Nanotechnology. 2008;19:445711. doi: 10.1088/0957-4484/19/44/445711. PubMed DOI

Ghosh S., Goudar V.S., Padmalekha K.G., Bhat S.V., Indi S.S., Vasan H.N. ZnO/Ag Nanohybrid: Synthesis, Characterization, Synergistic Antibacterial Activity and Its Mechanism. RSC Adv. 2012;2:930–940. doi: 10.1039/C1RA00815C. DOI

Bazant P., Munster L., Machovsky M., Sedlak J., Pastorek M., Kozakova Z., Kuritka I. Wood Flour Modified by Hierarchical Ag/ZnO as Potential Filler for Wood–plastic Composites with Enhanced Surface Antibacterial Performance. Ind. Crops Prod. 2014;62:179–187. doi: 10.1016/j.indcrop.2014.08.028. DOI

Dufour D., Leung V., Lévesque C.M. Bacterial Biofilm: Structure, Function, and Antimicrobial Resistance. Endod. Top. 2010;22:2–16. doi: 10.1111/j.1601-1546.2012.00277.x. DOI

Lindsay D., von Holy A. Bacterial Biofilms within the Clinical Setting: What Healthcare Professionals Should Know. J. Hosp. Infect. 2006;64:313–325. doi: 10.1016/j.jhin.2006.06.028. PubMed DOI

Beuchat L.R. Pathogenic Microorganisms Associated with Fresh Produce. J. Food Prot. 1996;59:204–216. doi: 10.4315/0362-028X-59.2.204. PubMed DOI

Samuel U., Guggenbichler J.P. Prevention of Catheter-Related Infections: The Potential of a New Nano-Silver Impregnated Catheter. Int. J. Antimicrob. Agents. 2004;23:75–78. doi: 10.1016/j.ijantimicag.2003.12.004. PubMed DOI

Okelo P.O., Wagner D.D., Carr L.E., Wheaton F.W., Douglass L.W., Joseph S.W. Optimization of Extrusion Conditions for Elimination of Mesophilic Bacteria during Thermal Processing of Animal Feed Mash. Anim. Feed Sci. Technol. 2006;129:116–137. doi: 10.1016/j.anifeedsci.2005.12.011. DOI

Flores G.E., Bates S.T., Knights D., Lauber C.L., Stombaugh J., Knight R., Fierer N. Microbial Biogeography of Public Restroom Surfaces. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0028132. PubMed DOI PMC

Bartlett K.H., Kennedy S.M., Brauer M., van Netten C., Dill B. Evaluation and Determinants of Airborne Bacterial Concentrations in School Classrooms. J. Occup. Environ. Hyg. 2004;1:639–647. doi: 10.1080/15459620490497744. PubMed DOI

Seaton A., Tran L., Aitken R., Donaldson K. Nanoparticles, Human Health Hazard and Regulation. J. R. Soc. Interface. 2009 doi: 10.1098/rsif.2009.0252.focus. PubMed DOI PMC

De Jong W.H., Borm P.J. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 2008;3:133–149. doi: 10.2147/IJN.S596. PubMed DOI PMC

Wiesner M.R., Lowry G.V., Alvarez P., Dionysiou D., Biswas P. Assessing the Risks of Manufactured Nanomaterials. Environ. Sci. Technol. 2006;40:4336–4345. doi: 10.1021/es062726m. PubMed DOI

Bazant P., Kuritka I., Munster L., Machovsky M., Kozakova Z., Saha P. Hybrid Nanostructured Ag/ZnO Decorated Powder Cellulose Fillers for Medical Plastics with Enhanced Surface Antibacterial Activity. J. Mater. Sci. Mater. Med. 2014;25:2501–2512. doi: 10.1007/s10856-014-5274-5. PubMed DOI

Li S., Meng L.M., Toprak M.S., Kim D.K., Muhammed M. Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications. Nano Rev. 2010;1:5214. doi: 10.3402/nano.v1i0.5214. PubMed DOI PMC

Clemons C.M., Caulfield D.F. Natural Fibers. In: Xanthos M., editor. Functional Fillers for Plastics. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2005. pp. 195–206. DOI

Müller K., Bugnicourt E., Latorre M., Jorda M., Echegoyen Sanz Y., Lagaron J.M., Miesbauer O., Bianchin A., Hankin S., Bölz U., et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials. 2017;7:74. doi: 10.3390/nano7040074. PubMed DOI PMC

Tanahashi M. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers. Materials. 2010;3:1593–1619. doi: 10.3390/ma3031593. DOI

Hornsby P. Compounding of Particulate-Filled Thermoplastics. In: Palsule S., editor. Polymers and Polymeric Composites: A Reference Series. Springer; Berlin/Heidelberg, Germany: 2016. pp. 1–16.

Machovsky M., Kuritka I., Bazant P., Vesela D., Saha P. Antibacterial Performance of ZnO-Based Fillers with Mesoscale Structured Morphology in Model Medical PVC Composites. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;41:70–77. doi: 10.1016/j.msec.2014.04.034. PubMed DOI

Jang Y.H., Kochuveedu S.T., Cha M.-A., Jang Y.J., Lee J.Y., Lee J., Lee J., Kim J., Ryu D.Y., Kim D.H. Synthesis and Photocatalytic Properties of Hierarchical Metal Nanoparticles/ZnO Thin Films Hetero Nanostructures Assisted by Diblock Copolymer Inverse Micellar Nanotemplates. J. Colloid Interface Sci. 2010;345:125–130. doi: 10.1016/j.jcis.2010.01.040. PubMed DOI

Zheng Y., Zheng L., Zhan Y., Lin X., Zheng Q., Wei K. Ag/ZnO Heterostructure Nanocrystals:  Synthesis, Characterization, and Photocatalysis. Inorg. Chem. 2007;46:6980–6986. doi: 10.1021/ic700688f. PubMed DOI

Dou P., Tan F., Wang W., Sarreshteh A., Qiao X., Qiu X., Chen J. One-Step Microwave-Assisted Synthesis of Ag/ZnO/Graphene Nanocomposites with Enhanced Photocatalytic Activity. J. Photochem. Photobiol. A Chem. 2015;302:17–22. doi: 10.1016/j.jphotochem.2014.12.012. DOI

Motshekga S.C., Ray S.S., Onyango M.S., Momba M.N.B. Microwave-Assisted Synthesis, Characterization and Antibacterial Activity of Ag/ZnO Nanoparticles Supported Bentonite Clay. J. Hazard. Mater. 2013;262:439–446. doi: 10.1016/j.jhazmat.2013.08.074. PubMed DOI

Ye X.-Y., Zhou Y.-M., Sun Y.-Q., Chen J., Wang Z.-Q. Preparation and Characterization of Ag/ZnO Composites via a Simple Hydrothermal Route. J. Nanopart. Res. 2009;11:1159–1166. doi: 10.1007/s11051-008-9511-z. DOI

Kakhki R.M., Tayebee R., Ahsani F. New and Highly Efficient Ag Doped ZnO Visible Nano Photocatalyst for Removing of Methylene Blue. J. Mater. Sci. Mater. Electron. 2017;28:5941–5952. doi: 10.1007/s10854-016-6268-5. DOI

Patil S.S., Mali M.G., Tamboli M.S., Patil D.R., Kulkarni M.V., Yoon H., Kim H., Al-Deyab S.S., Yoon S.S., Kolekar S.S., et al. Green Approach for Hierarchical Nanostructured Ag-ZnO and Their Photocatalytic Performance under Sunlight. Catal. Today. 2016;260:126–134. doi: 10.1016/j.cattod.2015.06.004. DOI

Huang Q., Zhang Q., Yuan S., Zhang Y., Zhang M. One-Pot Facile Synthesis of Branched Ag-ZnO Heterojunction Nanostructure as Highly Efficient Photocatalytic Catalyst. Appl. Surf. Sci. 2015;353:949–957. doi: 10.1016/j.apsusc.2015.06.197. DOI

Liu Y., Wei S., Gao W. Ag/ZnO Heterostructures and Their Photocatalytic Activity under Visible Light: Effect of Reducing Medium. J. Hazard. Mater. 2015;287:59–68. doi: 10.1016/j.jhazmat.2014.12.045. PubMed DOI

Drobny J.G. Handbook of Thermoplastic Elastomers. Plastics Design Library; William Andrew Publishing; Norwich, NY, USA: 2007. 7-Polyolefin-Based Thermoplastic Elastomers; pp. 191–199.

O’Connor K.S., Watts A., Vaidya T., LaPointe A.M., Hillmyer M.A., Coates G.W. Controlled Chain Walking for the Synthesis of Thermoplastic Polyolefin Elastomers: Synthesis, Structure, and Properties. Macromolecules. 2016;49:6743–6751. doi: 10.1021/acs.macromol.6b01567. DOI

Leone G., Mauri M., Pierro I., Ricci G., Canetti M., Bertini F. Polyolefin Thermoplastic Elastomers from 1-Octene Chain-Walking Polymerization. Polymer. 2016;100:37–44. doi: 10.1016/j.polymer.2016.08.009. DOI

Rouquerol J., Rouquerol F., Llewellyn P., Maurin G., Sing K.S.W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press; Cambridge, MA, USA: 2013.

Plastics—Determination of Flexural Properties. International Organization for Standardization; Geneva, Switzerland: 2010. ISO 178:2010.

Standard Test Methods for DC Resistance or Conductance of Insulating Materials. ASTM International Standard; West Conshohocken, PA, USA: 2014. ASTM D257-14.

Plastics—Measurement of Antibacterial Activity on Plastics Surfaces. International Organization for Standardization; Geneva, Switzerland: 2007. ISO 22196:2007.

Zhou X., Liu D., Bu H., Deng L., Liu H., Yuan P., Du P., Song H. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sci. 2018;3:16–29. doi: 10.1016/j.sesci.2017.12.002. DOI

Saoud K., Alsoubaihi R., Bensalah N., Bora T., Bertino M., Dutta J. Synthesis of Supported Silver Nano-Spheres on Zinc Oxide Nanorods for Visible Light Photocatalytic Applications. Mater. Res. Bull. 2015;63:134–140. doi: 10.1016/j.materresbull.2014.12.001. DOI

Machovský M., Mrlík M., Plachý T., Kuřitka I., Pavlínek V., Kožáková Z., Kitano T. The Enhanced Magnetorheological Performance of Carbonyl Iron Suspensions Using Magnetic Fe3O4/ZHS Hybrid Composite Sheets. RSC Adv. 2015;5:19213–19219. doi: 10.1039/C4RA14054K. DOI

Plastics—Determination of Tensile Properties—Part 2: Test Condition for Moulding and Extrusion Plastics. International Organization for Standardization; Geneva, Switzerland: 2012. ISO 527-2:2012.

Look D.C. Progress in ZnO Materials and Devices. J. Electron. Mater. 2006;35:1299–1305. doi: 10.1007/s11664-006-0258-y. DOI

Matula R.A. Electrical Resistivity of Copper, Gold, Palladium, and Silver. J. Phys. Chem. Ref. Data. 1979;8:1147–1298. doi: 10.1063/1.555614. DOI

Gulrez S.K.H., Ali Mohsin M.E., Shaikh H., Anis A., Pulose A.M., Yadav M.K., Qua E.H.P., Al-Zahrani S.M. A Review on Electrically Conductive Polypropylene and Polyethylene. Polym. Compos. 2014;35:900–914. doi: 10.1002/pc.22734. DOI

Antimicrobial Products—Test for Antimicrobial Activity and Efficacy. Japanese Industrial Standard; Tokyo, Japan: 2000. JIS Z 2801:2010.

Bazant P., Kuritka I., Munster L., Kalina L. Microwave Solvothermal Decoration of the Cellulose Surface by Nanostructured Hybrid Ag/ZnO Particles: A Joint XPS, XRD and SEM Study. Cellulose. 2015;22:1275–1293. doi: 10.1007/s10570-015-0561-y. DOI

Marambio-Jones C., Hoek E.M.V. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanopart. Res. 2010;12:1531–1551. doi: 10.1007/s11051-010-9900-y. DOI

Kong H., Jang J. Antibacterial Properties of Novel Poly(Methyl Methacrylate) Nanofiber Containing Silver Nanoparticles. Langmuir. 2008;24:2051–2056. doi: 10.1021/la703085e. PubMed DOI

AshaRani P., Hande M.P., Valiyaveettil S. Anti-Proliferative Activity of Silver Nanoparticles. BMC Cell Biol. 2009;10:65. doi: 10.1186/1471-2121-10-65. PubMed DOI PMC

Klapiszewski Ł., Rzemieniecki T., Krawczyk M., Malina D., Norman M., Zdarta J., Majchrzak I., Dobrowolska A., Czaczyk K., Jesionowski T. Kraft Lignin/Silica-AgNPs as a Functional Material with Antibacterial Activity. Colloid Surf. B. 2015;134:220–228. doi: 10.1016/j.colsurfb.2015.06.056. PubMed DOI

Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Appl. Phys. Lett. 2007;90:213902. doi: 10.1063/1.2742324. PubMed DOI PMC

Padmavathy N., Vijayaraghavan R. Enhanced Bioactivity of ZnO Nanoparticles—An Antimicrobial Study. Sci. Technol. Adv. Mater. 2008;9 doi: 10.1088/1468-6996/9/3/035004. PubMed DOI PMC

Kołodziejczak-Radzimska A., Jesionowski T. Zinc Oxide-From Synthesis to Application: A Review. Materials. 2014;7:2833–2881. doi: 10.3390/ma7042833. PubMed DOI PMC

Nowacka M., Modrzejewska-Sikorska A., Chrzanowski Ł., Ambrożewicz D., Rozmanowski T., Myszka K., Czaczyk K., Bula K., Jesionowski T. Electrokinetic and Bioactive Properties of CuO∙SiO2 Oxide Composites. Bioelectrochemistry. 2012;87:50–57. doi: 10.1016/j.bioelechem.2012.03.003. PubMed DOI

Fortunati E., Armentano I., Zhou Q., Iannoni A., Saino E., Visai L., Berglund L.A., Kenny J.M. Multifunctional Bionanocomposite Films of Poly(Lactic Acid), Cellulose Nanocrystals and Silver Nanoparticles. Carbohydr. Polym. 2012;87:1596–1605. doi: 10.1016/j.carbpol.2011.09.066. DOI

Tomacheski D., Pittol M., Ferreira Ribeiro V., Marlene Campomanes Santana R. Efficiency of Silver-Based Antibacterial Additives and Its Influence in Thermoplastic Elastomers. J. Appl. Polym. Sci. 2016;133 doi: 10.1002/app.43956. DOI

Pittol M., Tomacheski D., Simoes D.N., Ribeiro V.F., Campomanes Santana R.M. Antimicrobial Performance of Thermoplastic Elastomers Containing Zinc Pyrithione and Silver Nanoparticles. Mater. Res. 2017;20:1266–1273. doi: 10.1590/1980-5373-mr-2017-0137. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...