Synthesis and Effect of Hierarchically Structured Ag-ZnO Hybrid on the Surface Antibacterial Activity of a Propylene-Based Elastomer Blends
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29494511
PubMed Central
PMC5872942
DOI
10.3390/ma11030363
PII: ma11030363
Knihovny.cz E-zdroje
- Klíčová slova
- Ag-ZnO, antibacterial, hierarchical, nanocomposites, polypropylene, thermoplastic elastomers,
- Publikační typ
- časopisecké články MeSH
In this study, a hybrid Ag-ZnO nanostructured micro-filler was synthesized by the drop technique for used in plastic and medical industry. Furthermore, new antibacterial polymer nanocomposites comprising particles of Ag-ZnO up to 5 wt % and a blend of a thermoplastic polyolefin elastomer (TPO) with polypropylene were prepared using twin screw micro-compounder. The morphology and crystalline-phase structure of the hybrid Ag-ZnO nanostructured microparticles obtained was characterized by scanning electron microscopy and powder X-ray diffractometry. The specific surface area of this filler was investigated by means of nitrogen sorption via the Brunauer-Emmet-Teller method. A scanning electron microscope was used to conduct a morphological study of the polymer nanocomposites. Mechanical and electrical testing showed no adverse effects on the function of the polymer nanocomposites either due to the filler utilized or the given processing conditions, in comparison with the neat polymer matrix. The surface antibacterial activity of the compounded polymer nanocomposites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P, according to ISO 22196:2007 (E). All the materials at virtually every filler-loading level were seen to be efficient against both species of bacteria.
Zobrazit více v PubMed
Shaviv E., Schubert O., Alves-Santos M., Goldoni G., Di Felice R., Vallée F., Del Fatti N., Banin U., Sönnichsen C. Absorption Properties of Metal–Semiconductor Hybrid Nanoparticles. ACS Nano. 2011;5:4712–4719. doi: 10.1021/nn200645h. PubMed DOI
Paul D.R., Robeson L.M. Polymer Nanotechnology: Nanocomposites. Polymer. 2008;49:3187–3204. doi: 10.1016/j.polymer.2008.04.017. DOI
Palza H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015;16:2099–2116. doi: 10.3390/ijms16012099. PubMed DOI PMC
Aricò A.S., Bruce P., Scrosati B., Tarascon J.-M., van Schalkwijk W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005;4:366–377. doi: 10.1038/nmat1368. PubMed DOI
Scholes G.D. Book Review of Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications. J. Am. Chem. Soc. 2008;130:18028. doi: 10.1021/ja809158b. DOI
Bazant P., Kuritka I., Hudecek O., Machovsky M., Mrlik M., Sedlacek T. Microwave-Assisted Synthesis of Ag/ZnO Hybrid Filler, Preparation, and Characterization of Antibacterial Poly(Vinyl Chloride) Composites Made from the Same. Polym. Compos. 2014;35:19–26. doi: 10.1002/pc.22629. DOI
Lu W., Liu G., Gao S., Xing S., Wang J. Tyrosine-Assisted Preparation of Ag/ZnO Nanocomposites with Enhanced Photocatalytic Performance and Synergistic Antibacterial Activities. Nanotechnology. 2008;19:445711. doi: 10.1088/0957-4484/19/44/445711. PubMed DOI
Ghosh S., Goudar V.S., Padmalekha K.G., Bhat S.V., Indi S.S., Vasan H.N. ZnO/Ag Nanohybrid: Synthesis, Characterization, Synergistic Antibacterial Activity and Its Mechanism. RSC Adv. 2012;2:930–940. doi: 10.1039/C1RA00815C. DOI
Bazant P., Munster L., Machovsky M., Sedlak J., Pastorek M., Kozakova Z., Kuritka I. Wood Flour Modified by Hierarchical Ag/ZnO as Potential Filler for Wood–plastic Composites with Enhanced Surface Antibacterial Performance. Ind. Crops Prod. 2014;62:179–187. doi: 10.1016/j.indcrop.2014.08.028. DOI
Dufour D., Leung V., Lévesque C.M. Bacterial Biofilm: Structure, Function, and Antimicrobial Resistance. Endod. Top. 2010;22:2–16. doi: 10.1111/j.1601-1546.2012.00277.x. DOI
Lindsay D., von Holy A. Bacterial Biofilms within the Clinical Setting: What Healthcare Professionals Should Know. J. Hosp. Infect. 2006;64:313–325. doi: 10.1016/j.jhin.2006.06.028. PubMed DOI
Beuchat L.R. Pathogenic Microorganisms Associated with Fresh Produce. J. Food Prot. 1996;59:204–216. doi: 10.4315/0362-028X-59.2.204. PubMed DOI
Samuel U., Guggenbichler J.P. Prevention of Catheter-Related Infections: The Potential of a New Nano-Silver Impregnated Catheter. Int. J. Antimicrob. Agents. 2004;23:75–78. doi: 10.1016/j.ijantimicag.2003.12.004. PubMed DOI
Okelo P.O., Wagner D.D., Carr L.E., Wheaton F.W., Douglass L.W., Joseph S.W. Optimization of Extrusion Conditions for Elimination of Mesophilic Bacteria during Thermal Processing of Animal Feed Mash. Anim. Feed Sci. Technol. 2006;129:116–137. doi: 10.1016/j.anifeedsci.2005.12.011. DOI
Flores G.E., Bates S.T., Knights D., Lauber C.L., Stombaugh J., Knight R., Fierer N. Microbial Biogeography of Public Restroom Surfaces. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0028132. PubMed DOI PMC
Bartlett K.H., Kennedy S.M., Brauer M., van Netten C., Dill B. Evaluation and Determinants of Airborne Bacterial Concentrations in School Classrooms. J. Occup. Environ. Hyg. 2004;1:639–647. doi: 10.1080/15459620490497744. PubMed DOI
Seaton A., Tran L., Aitken R., Donaldson K. Nanoparticles, Human Health Hazard and Regulation. J. R. Soc. Interface. 2009 doi: 10.1098/rsif.2009.0252.focus. PubMed DOI PMC
De Jong W.H., Borm P.J. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 2008;3:133–149. doi: 10.2147/IJN.S596. PubMed DOI PMC
Wiesner M.R., Lowry G.V., Alvarez P., Dionysiou D., Biswas P. Assessing the Risks of Manufactured Nanomaterials. Environ. Sci. Technol. 2006;40:4336–4345. doi: 10.1021/es062726m. PubMed DOI
Bazant P., Kuritka I., Munster L., Machovsky M., Kozakova Z., Saha P. Hybrid Nanostructured Ag/ZnO Decorated Powder Cellulose Fillers for Medical Plastics with Enhanced Surface Antibacterial Activity. J. Mater. Sci. Mater. Med. 2014;25:2501–2512. doi: 10.1007/s10856-014-5274-5. PubMed DOI
Li S., Meng L.M., Toprak M.S., Kim D.K., Muhammed M. Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications. Nano Rev. 2010;1:5214. doi: 10.3402/nano.v1i0.5214. PubMed DOI PMC
Clemons C.M., Caulfield D.F. Natural Fibers. In: Xanthos M., editor. Functional Fillers for Plastics. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2005. pp. 195–206. DOI
Müller K., Bugnicourt E., Latorre M., Jorda M., Echegoyen Sanz Y., Lagaron J.M., Miesbauer O., Bianchin A., Hankin S., Bölz U., et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials. 2017;7:74. doi: 10.3390/nano7040074. PubMed DOI PMC
Tanahashi M. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers. Materials. 2010;3:1593–1619. doi: 10.3390/ma3031593. DOI
Hornsby P. Compounding of Particulate-Filled Thermoplastics. In: Palsule S., editor. Polymers and Polymeric Composites: A Reference Series. Springer; Berlin/Heidelberg, Germany: 2016. pp. 1–16.
Machovsky M., Kuritka I., Bazant P., Vesela D., Saha P. Antibacterial Performance of ZnO-Based Fillers with Mesoscale Structured Morphology in Model Medical PVC Composites. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;41:70–77. doi: 10.1016/j.msec.2014.04.034. PubMed DOI
Jang Y.H., Kochuveedu S.T., Cha M.-A., Jang Y.J., Lee J.Y., Lee J., Lee J., Kim J., Ryu D.Y., Kim D.H. Synthesis and Photocatalytic Properties of Hierarchical Metal Nanoparticles/ZnO Thin Films Hetero Nanostructures Assisted by Diblock Copolymer Inverse Micellar Nanotemplates. J. Colloid Interface Sci. 2010;345:125–130. doi: 10.1016/j.jcis.2010.01.040. PubMed DOI
Zheng Y., Zheng L., Zhan Y., Lin X., Zheng Q., Wei K. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis. Inorg. Chem. 2007;46:6980–6986. doi: 10.1021/ic700688f. PubMed DOI
Dou P., Tan F., Wang W., Sarreshteh A., Qiao X., Qiu X., Chen J. One-Step Microwave-Assisted Synthesis of Ag/ZnO/Graphene Nanocomposites with Enhanced Photocatalytic Activity. J. Photochem. Photobiol. A Chem. 2015;302:17–22. doi: 10.1016/j.jphotochem.2014.12.012. DOI
Motshekga S.C., Ray S.S., Onyango M.S., Momba M.N.B. Microwave-Assisted Synthesis, Characterization and Antibacterial Activity of Ag/ZnO Nanoparticles Supported Bentonite Clay. J. Hazard. Mater. 2013;262:439–446. doi: 10.1016/j.jhazmat.2013.08.074. PubMed DOI
Ye X.-Y., Zhou Y.-M., Sun Y.-Q., Chen J., Wang Z.-Q. Preparation and Characterization of Ag/ZnO Composites via a Simple Hydrothermal Route. J. Nanopart. Res. 2009;11:1159–1166. doi: 10.1007/s11051-008-9511-z. DOI
Kakhki R.M., Tayebee R., Ahsani F. New and Highly Efficient Ag Doped ZnO Visible Nano Photocatalyst for Removing of Methylene Blue. J. Mater. Sci. Mater. Electron. 2017;28:5941–5952. doi: 10.1007/s10854-016-6268-5. DOI
Patil S.S., Mali M.G., Tamboli M.S., Patil D.R., Kulkarni M.V., Yoon H., Kim H., Al-Deyab S.S., Yoon S.S., Kolekar S.S., et al. Green Approach for Hierarchical Nanostructured Ag-ZnO and Their Photocatalytic Performance under Sunlight. Catal. Today. 2016;260:126–134. doi: 10.1016/j.cattod.2015.06.004. DOI
Huang Q., Zhang Q., Yuan S., Zhang Y., Zhang M. One-Pot Facile Synthesis of Branched Ag-ZnO Heterojunction Nanostructure as Highly Efficient Photocatalytic Catalyst. Appl. Surf. Sci. 2015;353:949–957. doi: 10.1016/j.apsusc.2015.06.197. DOI
Liu Y., Wei S., Gao W. Ag/ZnO Heterostructures and Their Photocatalytic Activity under Visible Light: Effect of Reducing Medium. J. Hazard. Mater. 2015;287:59–68. doi: 10.1016/j.jhazmat.2014.12.045. PubMed DOI
Drobny J.G. Handbook of Thermoplastic Elastomers. Plastics Design Library; William Andrew Publishing; Norwich, NY, USA: 2007. 7-Polyolefin-Based Thermoplastic Elastomers; pp. 191–199.
O’Connor K.S., Watts A., Vaidya T., LaPointe A.M., Hillmyer M.A., Coates G.W. Controlled Chain Walking for the Synthesis of Thermoplastic Polyolefin Elastomers: Synthesis, Structure, and Properties. Macromolecules. 2016;49:6743–6751. doi: 10.1021/acs.macromol.6b01567. DOI
Leone G., Mauri M., Pierro I., Ricci G., Canetti M., Bertini F. Polyolefin Thermoplastic Elastomers from 1-Octene Chain-Walking Polymerization. Polymer. 2016;100:37–44. doi: 10.1016/j.polymer.2016.08.009. DOI
Rouquerol J., Rouquerol F., Llewellyn P., Maurin G., Sing K.S.W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press; Cambridge, MA, USA: 2013.
Plastics—Determination of Flexural Properties. International Organization for Standardization; Geneva, Switzerland: 2010. ISO 178:2010.
Standard Test Methods for DC Resistance or Conductance of Insulating Materials. ASTM International Standard; West Conshohocken, PA, USA: 2014. ASTM D257-14.
Plastics—Measurement of Antibacterial Activity on Plastics Surfaces. International Organization for Standardization; Geneva, Switzerland: 2007. ISO 22196:2007.
Zhou X., Liu D., Bu H., Deng L., Liu H., Yuan P., Du P., Song H. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sci. 2018;3:16–29. doi: 10.1016/j.sesci.2017.12.002. DOI
Saoud K., Alsoubaihi R., Bensalah N., Bora T., Bertino M., Dutta J. Synthesis of Supported Silver Nano-Spheres on Zinc Oxide Nanorods for Visible Light Photocatalytic Applications. Mater. Res. Bull. 2015;63:134–140. doi: 10.1016/j.materresbull.2014.12.001. DOI
Machovský M., Mrlík M., Plachý T., Kuřitka I., Pavlínek V., Kožáková Z., Kitano T. The Enhanced Magnetorheological Performance of Carbonyl Iron Suspensions Using Magnetic Fe3O4/ZHS Hybrid Composite Sheets. RSC Adv. 2015;5:19213–19219. doi: 10.1039/C4RA14054K. DOI
Plastics—Determination of Tensile Properties—Part 2: Test Condition for Moulding and Extrusion Plastics. International Organization for Standardization; Geneva, Switzerland: 2012. ISO 527-2:2012.
Look D.C. Progress in ZnO Materials and Devices. J. Electron. Mater. 2006;35:1299–1305. doi: 10.1007/s11664-006-0258-y. DOI
Matula R.A. Electrical Resistivity of Copper, Gold, Palladium, and Silver. J. Phys. Chem. Ref. Data. 1979;8:1147–1298. doi: 10.1063/1.555614. DOI
Gulrez S.K.H., Ali Mohsin M.E., Shaikh H., Anis A., Pulose A.M., Yadav M.K., Qua E.H.P., Al-Zahrani S.M. A Review on Electrically Conductive Polypropylene and Polyethylene. Polym. Compos. 2014;35:900–914. doi: 10.1002/pc.22734. DOI
Antimicrobial Products—Test for Antimicrobial Activity and Efficacy. Japanese Industrial Standard; Tokyo, Japan: 2000. JIS Z 2801:2010.
Bazant P., Kuritka I., Munster L., Kalina L. Microwave Solvothermal Decoration of the Cellulose Surface by Nanostructured Hybrid Ag/ZnO Particles: A Joint XPS, XRD and SEM Study. Cellulose. 2015;22:1275–1293. doi: 10.1007/s10570-015-0561-y. DOI
Marambio-Jones C., Hoek E.M.V. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanopart. Res. 2010;12:1531–1551. doi: 10.1007/s11051-010-9900-y. DOI
Kong H., Jang J. Antibacterial Properties of Novel Poly(Methyl Methacrylate) Nanofiber Containing Silver Nanoparticles. Langmuir. 2008;24:2051–2056. doi: 10.1021/la703085e. PubMed DOI
AshaRani P., Hande M.P., Valiyaveettil S. Anti-Proliferative Activity of Silver Nanoparticles. BMC Cell Biol. 2009;10:65. doi: 10.1186/1471-2121-10-65. PubMed DOI PMC
Klapiszewski Ł., Rzemieniecki T., Krawczyk M., Malina D., Norman M., Zdarta J., Majchrzak I., Dobrowolska A., Czaczyk K., Jesionowski T. Kraft Lignin/Silica-AgNPs as a Functional Material with Antibacterial Activity. Colloid Surf. B. 2015;134:220–228. doi: 10.1016/j.colsurfb.2015.06.056. PubMed DOI
Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Appl. Phys. Lett. 2007;90:213902. doi: 10.1063/1.2742324. PubMed DOI PMC
Padmavathy N., Vijayaraghavan R. Enhanced Bioactivity of ZnO Nanoparticles—An Antimicrobial Study. Sci. Technol. Adv. Mater. 2008;9 doi: 10.1088/1468-6996/9/3/035004. PubMed DOI PMC
Kołodziejczak-Radzimska A., Jesionowski T. Zinc Oxide-From Synthesis to Application: A Review. Materials. 2014;7:2833–2881. doi: 10.3390/ma7042833. PubMed DOI PMC
Nowacka M., Modrzejewska-Sikorska A., Chrzanowski Ł., Ambrożewicz D., Rozmanowski T., Myszka K., Czaczyk K., Bula K., Jesionowski T. Electrokinetic and Bioactive Properties of CuO∙SiO2 Oxide Composites. Bioelectrochemistry. 2012;87:50–57. doi: 10.1016/j.bioelechem.2012.03.003. PubMed DOI
Fortunati E., Armentano I., Zhou Q., Iannoni A., Saino E., Visai L., Berglund L.A., Kenny J.M. Multifunctional Bionanocomposite Films of Poly(Lactic Acid), Cellulose Nanocrystals and Silver Nanoparticles. Carbohydr. Polym. 2012;87:1596–1605. doi: 10.1016/j.carbpol.2011.09.066. DOI
Tomacheski D., Pittol M., Ferreira Ribeiro V., Marlene Campomanes Santana R. Efficiency of Silver-Based Antibacterial Additives and Its Influence in Thermoplastic Elastomers. J. Appl. Polym. Sci. 2016;133 doi: 10.1002/app.43956. DOI
Pittol M., Tomacheski D., Simoes D.N., Ribeiro V.F., Campomanes Santana R.M. Antimicrobial Performance of Thermoplastic Elastomers Containing Zinc Pyrithione and Silver Nanoparticles. Mater. Res. 2017;20:1266–1273. doi: 10.1590/1980-5373-mr-2017-0137. DOI