Atf3 links loss of epithelial polarity to defects in cell differentiation and cytoarchitecture
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29494583
PubMed Central
PMC5849342
DOI
10.1371/journal.pgen.1007241
PII: PGENETICS-D-17-02089
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace MeSH
- chromatinová imunoprecipitace MeSH
- Drosophila melanogaster cytologie genetika MeSH
- endozomy metabolismus MeSH
- geneticky modifikovaná zvířata MeSH
- imaginální disky cytologie fyziologie MeSH
- lamin typ A genetika metabolismus MeSH
- larva MeSH
- MAP kinasový signální systém MeSH
- membránové proteiny MeSH
- nádorové supresorové proteiny genetika metabolismus MeSH
- nukleotidové motivy fyziologie MeSH
- oči růst a vývoj MeSH
- polarita buněk fyziologie MeSH
- proteinkinasa C metabolismus MeSH
- proteiny Drosophily genetika metabolismus MeSH
- transkripční faktor ATF3 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dlg1 protein, Drosophila MeSH Prohlížeč
- lamin C MeSH Prohlížeč
- lamin typ A MeSH
- membránové proteiny MeSH
- nádorové supresorové proteiny MeSH
- proteinkinasa C MeSH
- proteiny Drosophily MeSH
- Scrib protein, Drosophila MeSH Prohlížeč
- transkripční faktor ATF3 MeSH
Interplay between apicobasal cell polarity modules and the cytoskeleton is critical for differentiation and integrity of epithelia. However, this coordination is poorly understood at the level of gene regulation by transcription factors. Here, we establish the Drosophila activating transcription factor 3 (atf3) as a cell polarity response gene acting downstream of the membrane-associated Scribble polarity complex. Loss of the tumor suppressors Scribble or Dlg1 induces atf3 expression via aPKC but independent of Jun-N-terminal kinase (JNK) signaling. Strikingly, removal of Atf3 from Dlg1 deficient cells restores polarized cytoarchitecture, levels and distribution of endosomal trafficking machinery, and differentiation. Conversely, excess Atf3 alters microtubule network, vesicular trafficking and the partition of polarity proteins along the apicobasal axis. Genomic and genetic approaches implicate Atf3 as a regulator of cytoskeleton organization and function, and identify Lamin C as one of its bona fide target genes. By affecting structural features and cell morphology, Atf3 functions in a manner distinct from other transcription factors operating downstream of disrupted cell polarity.
Biology Center Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czech Republic
Center for Molecular Medicine Cologne University of Cologne Cologne Germany
Zobrazit více v PubMed
Tepass U. The Apical Polarity Protein Network in Drosophila Epithelial Cells: Regulation of Polarity, Junctions, Morphogenesis, Cell Growth, and Survival. Annu Rev Cell Dev Biol. 2012;28: 655–685. doi.org/10.1146/annurev-cellbio-092910-154033 doi: 10.1146/annurev-cellbio-092910-154033 PubMed DOI
Kockel L, Homsy JG, Bohmann D. Drosophila AP-1: lessons from an invertebrate. Oncogene. Nature Publishing Group; 2001;20: 2347–2364. doi: 10.1038/sj.onc.1204300 PubMed DOI
Angel P, Szabowski A, Schorpp-Kistner M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene. Nature Publishing Group; 2001;20: 2413–2423. doi: 10.1038/sj.onc.1204380 PubMed DOI
Zenz R, Scheuch H, Martin P, Frank C, Eferl R, Kenner L, et al. c-Jun Regulates Eyelid Closure and Skin Tumor Development through EGFR Signaling. Dev Cell. Elsevier Inc; 2003;4: 879–889. doi: 10.1016/S1534-5807(03)00161-8 PubMed DOI
Sekyrova P, Bohmann D, Jindra M, Uhlirova M. Interaction between Drosophila bZIP proteins Atf3 and Jun prevents replacement of epithelial cells during metamorphosis. Development. The Company of Biologists Ltd; 2010;137: 141–150. doi: 10.1242/dev.037861 PubMed DOI PMC
Wang A, Arantes S, Conti C, McArthur M, Aldaz CM, Macleod MC. Epidermal hyperplasia and oral carcinoma in mice overexpressing the transcription factor ATF3 in basal epithelial cells. Mol Carcinog. Wiley Subscription Services, Inc., A Wiley Company; 2007;46: 476–487. doi: 10.1002/mc.20298 PubMed DOI
Hai T, Wolford CC, Chang Y-S. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? gene expr. 2010;15: 1–11. doi: 10.3727/105221610X12819686555015 PubMed DOI PMC
Kool J, Hamdi M, Cornelissen-Steijger P, van der Eb AJ, Terleth C, van Dam H. Induction of ATF3 by ionizing radiation is mediated via a signaling pathway that includes ATM, Nibrin1, stress-induced MAPkinases and ATF-2. Oncogene. 2003;22: 4235–4242. doi: 10.1038/sj.onc.1206611 PubMed DOI
Wu X, Nguyen B-C, Dziunycz P, Chang S, Brooks Y, Lefort K, et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature. 2010;465: 368–372. doi: 10.1038/nature08996 PubMed DOI PMC
Bunker BD, Nellimoottil TT, Boileau RM, Classen AK, Bilder D, McNeill H. The transcriptional response to tumorigenic polarity loss in Drosophila. eLife. eLife Sciences Publications Limited; 2015;4: e03189 doi: 10.7554/eLife.03189 PubMed DOI PMC
Külshammer E, Mundorf J, Kilinc M, Frommolt P, Wagle P, Uhlirova M. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy. Dis Model Mech. The Company of Biologists Ltd; 2015;8: 1279–1293. doi: 10.1242/dmm.020719 PubMed DOI PMC
Atkins M, Potier D, Romanelli L, Jacobs J, Mach J, Hamaratoglu F, et al. An Ectopic Network of Transcription Factors Regulated by Hippo Signaling Drives Growth and Invasion of a Malignant Tumor Model. Curr Biol. 2016;26: 2101–2113. doi: 10.1016/j.cub.2016.06.035 PubMed DOI
Doggett K, Turkel N, Willoughby LF, Ellul J, Murray MJ, Richardson HE, et al. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila. Bergmann A, editor. PLoS ONE. Public Library of Science; 2015;10: e0132987 10.1371/journal.pone.0132987 doi: 10.1371/journal.pone.0132987 PubMed DOI PMC
Harper EG, Alvares SM, Carter WG. Wounding activates p38 map kinase and activation transcription factor 3 in leading keratinocytes. J Cell Sci. 2005;118: 3471–3485. doi: 10.1242/jcs.02475 PubMed DOI
Khan SJ, Abidi SNF, Skinner A, Tian Y, Smith-Bolton RK. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling. Bosco G, editor. PLoS Genet. Public Library of Science; 2017;13: e1006937 doi: 10.1371/journal.pgen.1006937 PubMed DOI PMC
Wang A, Arantes S, Yan L, Kiguchi K, McArthur MJ, Sahin A, et al. The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis. BMC Cancer. 2008;8: 268 doi: 10.1186/1471-2407-8-268 PubMed DOI PMC
Pastar I, Stojadinovic O, Krzyzanowska A, Barrientos S, Stuelten C, Zimmerman K, et al. Attenuation of the Transforming Growth Factor β –Signaling Pathway in Chronic Venous Ulcers. Molecular Medicine. The Feinstein Institute for Medical Research; 2010;16: 92–101. doi: 10.2119/molmed.2009.00149 PubMed DOI PMC
Pelzer AE, Bektic J, Haag P, Berger AP, Pycha A, Schäfer G, et al. The Expression of Transcription Factor Activating Transcription Factor 3 in the Human Prostate and its Regulation by Androgen in Prostate Cancer. The Journal of Urology. 2006;175: 1517–1522. doi: 10.1016/S0022-5347(05)00651-8 PubMed DOI
Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L, et al. ATF3 Suppresses Metastasis of Bladder Cancer by Regulating Gelsolin-Mediated Remodeling of the Actin Cytoskeleton. Cancer Res. 2013;73: 3625–3637. doi: 10.1158/0008-5472.CAN-12-3879 PubMed DOI
Yin X, Dewille JW, Hai T. A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene. 2008;27: 2118–2127. doi: 10.1038/sj.onc.1210861 PubMed DOI
Rynes J, Donohoe CD, Frommolt P, Brodesser S, Jindra M, Uhlirova M. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis. Mol Cell Biol. 2012;32: 3949–3962. doi: 10.1128/MCB.00429-12 PubMed DOI PMC
Leong GR, Goulding KR, Amin N, Richardson HE, Brumby AM. Scribble mutants promote aPKC and JNK-dependent epithelial neoplasia independently of Crumbs. BMC Biol. 2009;7: 62 doi: 10.1186/1741-7007-7-62 PubMed DOI PMC
Chen CL, Schroeder MC, Kango-Singh M, Tao C, Halder G. Tumor suppression by cell competition through regulation of the Hippo pathway. Proc Natl Acad Sci. 2012;109: 484–489. doi: 10.1073/pnas.1113882109 PubMed DOI PMC
Yang C-C, Graves HK, Moya IM, Tao C, Hamaratoglu F, Gladden AB, et al. Differential regulation of the Hippo pathway by adherens junctions and apical–basal cell polarity modules. Proc Natl Acad Sci. 2015;112: 1785–1790. doi: 10.1073/pnas.1420850112 PubMed DOI PMC
Brumby AM, Richardson HE. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 2003;22: 5769–5779. doi: 10.1093/emboj/cdg548 PubMed DOI PMC
Chatterjee N, Bohmann D. A versatile ΦC31 based reporter system for measuring AP-1 and Nrf2 signaling in Drosophila and in tissue culture. PLoS ONE. Public Library of Science; 2012;7: e34063 doi: 10.1371/journal.pone.0034063 PubMed DOI PMC
Doggett K, Grusche FA, Richardson HE, Brumby AM. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol. 2011;11: 57 doi: 10.1186/1471-213X-11-57 PubMed DOI PMC
Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE. Lgl, aPKC, and Crumbs Regulate the Salvador/Warts/Hippo Pathway through Two Distinct Mechanisms. Curr Biol. 2010;20: 573–581. doi: 10.1016/j.cub.2010.01.055 PubMed DOI
de Vreede G, Schoenfeld JD, Windler SL, Morrison H, Lu H, Bilder D. The Scribble module regulates retromer-dependent endocytic trafficking during epithelial polarization. Development. The Company of Biologists Ltd; 2014;141: 2796–2802. doi: 10.1242/dev.105403 PubMed DOI PMC
Igaki T, Pagliarini RA, Xu T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol. 2006;16: 1139–1146. doi: 10.1016/j.cub.2006.04.042 PubMed DOI
Uhlirova M, Jasper H, Bohmann D. Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci. 2005;102: 13123–13128. doi: 10.1073/pnas.0504170102 PubMed DOI PMC
Uhlirova M, Bohmann D. JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J. 2006;25: 5294–5304. doi: 10.1038/sj.emboj.7601401 PubMed DOI PMC
Ohsawa S, Sugimura K, Takino K, Xu T, Miyawaki A, Igaki T. Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell. Elsevier Inc; 2011;20: 315–328. doi: 10.1016/j.devcel.2011.02.007 PubMed DOI
Woods DF, Bryant PJ. Molecular cloning of the lethal(1)discs large-1 oncogene of Drosophila. Dev Biol. 1989;134: 222–235. PubMed
Perrimon N. The maternal effect of lethal(1)discs-large-1: A recessive oncogene of Drosophila melanogaster. Dev Biol. 1988;127: 392–407. PubMed
Stowers RS, Schwarz TL. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics. 1999;152: 1631–1639. PubMed PMC
Fan Y, Bergmann A. Multiple Mechanisms Modulate Distinct Cellular Susceptibilities toward Apoptosis in the Developing Drosophila Eye. Dev Cell. Elsevier Inc; 2014;30: 48–60. doi: 10.1016/j.devcel.2014.05.007 PubMed DOI PMC
Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T . Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. 2009;16: 458–465. doi: 10.1016/j.devcel.2009.01.002 PubMed DOI PMC
Lohia M, Qin Y, Macara IG. The Scribble Polarity Protein Stabilizes E-Cadherin/p120-Catenin Binding and Blocks Retrieval of E-Cadherin to the Golgi. Gottardi C, editor. PLoS ONE. Public Library of Science; 2012;7: e51130 doi: 10.1371/journal.pone.0051130 PubMed DOI PMC
Parsons LM, Portela M, Grzeschik NA, Richardson HE. Lgl regulates Notch signaling via endocytosis, independently of the apical aPKC-Par6-Baz polarity complex. Curr Biol. 2014;24: 2073–2084. doi: 10.1016/j.cub.2014.07.075 PubMed DOI
Nelson WJ. Remodeling Epithelial Cell Organization: Transitions Between Front–Rear and Apical–Basal Polarity. Cold Spring Harb Perspect Biol. Cold Spring Harbor Laboratory Press; 2009;1: a000513–a000513. doi: 10.1101/cshperspect.a000513 PubMed DOI PMC
Apodaca G, Gallo LI, Bryant DM. Role of membrane traffic in the generation of epithelial cell asymmetry. Nat Cell Biol. 2012;14: 1235–1243. doi: 10.1038/ncb2635 PubMed DOI PMC
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2: 28–36. PubMed
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble W. Quantifying similarity between motifs. Genome Biology. 2007;8: R24 doi: 10.1186/gb-2007-8-2-r24 PubMed DOI PMC
Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, Guillier F, et al. FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome Biology. BioMed Central Ltd; 2007;8: R129 doi: 10.1186/gb-2007-8-7-r129 PubMed DOI PMC
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27: 1017–1018. doi: 10.1093/bioinformatics/btr064 PubMed DOI PMC
Huang W, Loganantharaj R, Schroeder B, Fargo D, Li L. PAVIS: a tool for Peak Annotation and Visualization. Bioinformatics. Oxford University Press; 2013;29: 3097–3099. doi: 10.1093/bioinformatics/btt520 PubMed DOI PMC
Li R, Gundersen GG. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol. Nature Publishing Group; 2008;9: 860–873. doi: 10.1038/nrm2522 PubMed DOI
Schreiber KH, Kennedy BK. When Lamins Go Bad: Nuclear Structure and Disease. 2013;152: 1365–1375. doi: 10.1016/j.cell.2013.02.015 PubMed DOI PMC
Dechat T, Adam SA, Taimen P, Shimi T, Goldman RD. Nuclear Lamins. Cold Spring Harb Perspect Biol. 2010;2: a000547–a000547. doi: 10.1101/cshperspect.a000547 PubMed DOI PMC
Chang W, Worman HJ, Gundersen GG. Accessorizing and anchoring the LINC complex for multifunctionality. J Cell Biol. Rockefeller University Press; 2015;208: 11–22. doi: 10.1083/jcb.201409047 PubMed DOI PMC
Turkel N, Sahota VK, Bolden JE, Goulding KR, Doggett K, Willoughby LF, et al. The BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-like cell state. PLoS Genet. Public Library of Science; 2013;9: e1003627 doi: 10.1371/journal.pgen.1003627 PubMed DOI PMC
Sun G, Irvine KD. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev Biol. 2011;350: 139–151. doi: 10.1016/j.ydbio.2010.11.036 PubMed DOI PMC
Richardson ECN, Pichaud F. Crumbs is required to achieve proper organ size control during Drosophila head development. Development. The Company of Biologists Ltd; 2010;137: 641–650. doi: 10.1242/dev.041913 PubMed DOI PMC
Takino K, Ohsawa S, Igaki T. Loss of Rab5 drives non-autonomous cell proliferation through TNF and Ras signaling in Drosophila. Dev Biol. 2014;395: 19–28. doi: 10.1016/j.ydbio.2014.09.003 PubMed DOI
Pellinen T, Arjonen A, Vuoriluoto K, Kallio K, Fransen JAM, Ivaska J. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J Cell Biol. Rockefeller Univ Press; 2006;173: 767–780. doi: 10.1083/jcb.200509019 PubMed DOI PMC
Shimada Y, Yonemura S, Ohkura H, Strutt D, Uemura T. Polarized Transport of Frizzled along the Planar Microtubule Arrays in Drosophila Wing Epithelium. Dev Cell. Elsevier Inc; 2006;10: 209–222. doi: 10.1016/j.devcel.2005.11.016 PubMed DOI
Caviston JP, Holzbaur ELF. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 2006;16: 530–537. doi: 10.1016/j.tcb.2006.08.002 PubMed DOI
Külshammer E, Uhlirova M. The actin cross-linker Filamin/Cheerio mediates tumor malignancy downstream of JNK signaling. J Cell Sci. The Company of Biologists Ltd; 2013;126: 927–938. doi: 10.1242/jcs.114462 PubMed DOI
Vaughen J, Igaki T . Slit-Robo Repulsive Signaling Extrudes Tumorigenic Cells from Epithelia. Dev Cell. Elsevier Inc; 2016;39: 683–695. doi: 10.1016/j.devcel.2016.11.015 PubMed DOI PMC
Lee JL, Streuli CH. Integrins and epithelial cell polarity. J Cell Sci. The Company of Biologists Ltd; 2014;127: 3217–3225. doi: 10.1242/jcs.146142 PubMed DOI PMC
Bosveld F, Markova O, Guirao B, Martin C, Wang Z, Pierre A, et al. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis. Nature. Nature Publishing Group; 2016;530: 495–498. doi: 10.1038/nature16970 PubMed DOI PMC
Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ, et al. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Elsevier Inc; 2017;171: 1397–1410.e14. doi: 10.1016/j.cell.2017.10.008 PubMed DOI
Denais CM, Gilbert RM, Isermann P, McGregor AL, Lindert te M, Weigelin B, et al. Nuclear envelope rupture and repair during cancer cell migration. Science. 2016;352: 353–358. doi: 10.1126/science.aad7297 PubMed DOI PMC
Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. Nature Publishing Group; 2008;453: 948–951. doi: 10.1038/nature06947 PubMed DOI
Schäfer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol. Nature Publishing Group; 2008;9: 628–638. doi: 10.1038/nrm2455 PubMed DOI
Hsu JC, Laz T, Mohn KL, Taub R. Identification of Lrf-1, a Leucine-Zipper Protein That Is Rapidly and Highly Induced in Regenerating Liver. Proc Natl Acad Sci. 1991;88: 3511–3515. doi: 10.1073/pnas.88.9.3511 PubMed DOI PMC
Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science. 2003;302: 1227–1231. doi: 10.1126/science.1088474 PubMed DOI
Sotillos S, Díaz-Meco MT, Caminero E, Moscat J, Campuzano S. DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. J Cell Biol. Rockefeller Univ Press; 2004;166: 549–557. doi: 10.1083/jcb.200311031 PubMed DOI PMC
Schulze SR, Curio-Penny B, Li YH, Imani RA, Rydberg L, Geyer PK, et al. Molecular genetic analysis of the nested Drosophila melanogaster lamin C gene. Genetics. 2005;171: 185–196. doi: 10.1534/genetics.105.043208 PubMed DOI PMC
Groth AC, Fish M, Nusse R, Calos MP. Construction of Transgenic Drosophila by Using the Site-Specific Integrase From Phage φC31. Genetics. 2004;166: 1775–1782. PubMed PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25: 402–408. doi: 10.1006/meth.2001.1262 PubMed DOI
Lee T, Luo L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 2001;24: 251–254. PubMed
Sandmann T, Jakobsen JS, Furlong EEM. ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Nat Protoc. Nature Publishing Group; 2006;1: 2839–2855. doi: 10.1038/nprot.2006.383 PubMed DOI
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. Oxford University Press; 2010;26: 841–842. doi: 10.1093/bioinformatics/btq033 PubMed DOI PMC
Oktaba K, Gutiérrez L, Gagneur J, Girardot C, Sengupta AK, Furlong EEM, et al. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev Cell. Elsevier Inc; 2008;15: 877–889. doi: 10.1016/j.devcel.2008.10.005 PubMed DOI
Mundorf J, Uhlirova M. The Drosophila Imaginal Disc Tumor Model: Visualization and Quantification of Gene Expression and Tumor Invasiveness Using Genetic Mosaics. JoVE. 2016;: e54585 doi: 10.3791/54585 PubMed DOI PMC
Wagle P, Nikolić M, Frommolt P. QuickNGS elevates Next-Generation Sequencing data analysis to a new level of automation. BMC Genomics. BioMed Central; 2015;16: 487 doi: 10.1186/s12864-015-1695-x PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25: 1105–1111. doi: 10.1093/bioinformatics/btp120 PubMed DOI PMC
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28: 511–515. doi: 10.1038/nbt.1621 PubMed DOI PMC
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biology. BioMed Central; 2010;11: R106 doi: 10.1186/gb-2010-11-10-r106 PubMed DOI PMC
Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21: 3439–3440. doi: 10.1093/bioinformatics/bti525 PubMed DOI
Housden BE, Millen K, Bray SJ. Drosophila Reporter Vectors Compatible with ΦC31 Integrase Transgenesis Techniques and Their Use to Generate New Notch Reporter Fly Lines. G3: Genes|Genomes|Genetics. Genetics Society of America; 2012;2: 79–82. doi: 10.1534/g3.111.001321 PubMed DOI PMC
Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41: 1149–1160. doi: 10.3758/BRM.41.4.1149 PubMed DOI