Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29546040
PubMed Central
PMC5838023
DOI
10.3389/fchem.2018.00035
Knihovny.cz E-zdroje
- Klíčová slova
- affinity, entropic inequality, independent reactions, kinetics, rate constants, rate equations, thermodynamics,
- Publikační typ
- časopisecké články MeSH
Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.
Zobrazit více v PubMed
Al-Khateeb A. N., Powers J. M., Paolucci S., Sommese A. J., Diller J. A., Hauenstein J. D., Mengers J. D. (2009). One-dimensional slow invariant manifolds for spatially homogenous reactive systems. J. Chem. Phys. 131:024118. 10.1063/1.3171613 PubMed DOI
Arato E., Morro A. (2014). A thermodynamic approach to kinetics of reactions. Z. Phys.Chem. 228, 793–815. 10.1515/zpch-2014-0531 DOI
Bedeaux D., Pagonabarraga I., Ortizde Zárate J. M., Sengers J. V., Kjelstrup S. (2010). Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion. Phys. Chem. Chem. Phys. 12, 12780–12793. 10.1039/c0cp00289e PubMed DOI
Bothe D., Dreyer W. (2015). Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226, 1757–1805. 10.1007/s00707-014-1275-1 DOI
Bowen R. M. (1968). On the stoichiometry of chemically reacting systems. Arch. Rational Mech. Anal. 29, 114–124. 10.1007/BF00281361 DOI
Boyd R. K. (1977). Macroscopic and microscopic restrictions on chemical kinetics. Chem. Rev. 77, 93–119. 10.1021/cr60305a006 DOI
Ederer M., Gilles M. E. D. (2008). Thermodynamic constraints in kinetic modeling: thermodynamic-kinetic modeling in comparison to other approaches. Eng. Life Sci. 8, 467–476. 10.1002/elsc.200800040 DOI
Fleming R. M. T., Thiele I., Provan G., Nasheuer H. P. (2010). Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. J. Theor. Biol. 264, 683–692. 10.1016/j.jtbi.2010.02.044 PubMed DOI PMC
Ge H., Qian H. (2016). Nonequilibrium thermodynamic formalism of nonlinear chemical reaction systems with Waage-Guldberg's law of mass action. Chem. Phys. 472, 241–248. 10.1016/j.chemphys.2016.03.026 DOI
Hernández-Lemus E., Tovar H., Mejía C. (2014). Non-equilibrium thermodynamics analysis of transcriptional regulation kinetics. J. Non Equilib. Thermodyn. 39, 205–218. 10.1515/jnet-2014-0015 DOI
Jones N. H., Cizmas P. G. A., Slattery J. C. (2015). Creating reduced kinetics models that satisfy the entropy inequality. J. Eng. Gas Turbines Power 137:071504 10.1115/1.4029172 DOI
Kannan K., Rajagopal K. R. (2011). A thermodynamical framework for chemically reacting systems. Z. Angew. Math. Phys. 62, 331–363. 10.1007/s00033-010-0104-1 DOI
Klika V., Grmela M. (2013). Coupling between chemical kinetics and mechanics that is both nonlinear and compatible with thermodynamics. Phys. Rev. 87:012141. 10.1103/PhysRevE.87.012141 PubMed DOI
N'Guyen T. A., Lejeunes S., Eyheramendy D., Boukamel A. (2016). A thermodynamical framework for the thermo-chemo-mechanical couplings in soft materials at finitestrain. Mech. Mater. 95, 158–171. 10.1016/j.mechmat.2016.01.008 DOI
Pagonabarraga I., Pérez-Madrid A., Rubí J. M. (1997). Fluctuating hydrodynamics approach to chemical reactions. Physica A 237, 205–219. 10.1016/S0378-4371(96)00377-9 DOI
Pekař M. (2009). Thermodynamic framework for design of reaction rate equations and schemes. Collect. Czech. Chem. Commun. 74, 1375–1401. 10.1135/cccc2009010 DOI
Pekař M. (2016). Thermodynamic analysis of chemically reacting mixtures and their kinetics – example of a mixture of three isomers. ChemPhysChem 17, 3333–3341. 10.1002/cphc.201600528 PubMed DOI
Pekař M., Samohýl I. (2014). The Thermodynamics of Linear Fluids and Fluid Mixtures. Cham: Springer.
Qian H. (2007). Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem. 58, 113–142. 10.1146/annurev.physchem.58.032806.104550 PubMed DOI
Rubí J. M., Bedeaux D., Kjelstrup S., Pagonabarraga I. (2013). Chemical cycle kinetics: removing the limitation of linearity of a non-equilibrium thermodynamic description. Int. J. Thermophys. 34, 1214–1228. 10.1007/s10765-013-1484-1 DOI
Samohýl I. (1982). Rational Thermodynamics of Chemically Reacting Mixtures. Prague: Academia (in Czech).
Vlad M. O., Ross J. (2009). Thermodynamically Based Constraints for Rate Coefficients of Large Biochemical Networks. WIREs Syst. Biol. Med. 1, 348–358. 10.1002/wsbm.50 PubMed DOI
Non-Equilibrium Thermodynamics View on Kinetics of Autocatalytic Reactions-Two Illustrative Examples
Thermodynamic Driving Forces and Chemical Reaction Fluxes; Reflections on the Steady State