Non-Equilibrium Thermodynamics View on Kinetics of Autocatalytic Reactions-Two Illustrative Examples

. 2021 Jan 22 ; 26 (3) : . [epub] 20210122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33499305

Autocatalytic reactions are in certain contrast with the linear algebra of reaction stoichiometry, on which rate equations respecting the permanence of atoms are constructed. These mathematical models of chemical reactions are called conservative. Using a non-equilibrium thermodynamics-based theory of chemical kinetics, it is shown how to introduce autocatalytic step into such (conservative) rate equation properly. Further, rate equations based on chemical potentials or affinities are derived, and conditions for the consistency of rate equations with the entropic inequality (the second law of thermodynamics) are illustrated. The theory illustrated here can be viewed as a tool for verifying and generalizing traditional mass-action kinetics by means of modern non-equilibrium thermodynamics, which is able to deal also with such rather problematic cases.

Zobrazit více v PubMed

Berry R.S., Rice S.A., Ross J. Physical Chemistry. 2nd ed. Oxford University Press; New York, NY, USA: 2000.

Atkins P., de Paula J. Atkin’s Physical Chemistry. 7th ed. Oxford University Press; Oxford, UK: 2002.

Houston P.L. Chemical Kinetics and Reaction Dynamics. McGraw-Hill; New York, NY, USA: 2001.

Bisette A.J., Fletcher S.P. Mechanisms of Autocatalysis. Angew. Chem. Int. Ed. 2013;52:12800–12826. doi: 10.1002/anie.201303822. PubMed DOI

Preiner M., Xavier J.C., Vieirado N.A., Kleinermanns K., Allen J.F., Martin W.F. Catalysts, autocatalysis and the origin of metabolism. Interface Focus. 2019;9:20190072. doi: 10.1098/rsfs.2019.0072. PubMed DOI PMC

Schuster P. What is special about autocatalysis? Monatsh. Chem. 2019;150:763–775. doi: 10.1007/s00706-019-02437-z. DOI

Ashkenasy G., Hermans T.M., Otto S., Taylor A.F. Systems chemistry. Chem. Soc. Rev. 2017;46:2543–2554. doi: 10.1039/C7CS00117G. PubMed DOI

Érdi P., Tóth J. Mathematical Models of Chemical Reactions. Princeton University Press; Princeton, NJ, USA: 1989.

Pekař M., Samohýl I. The Thermodynamics of Linear Fluids and Fluid Mixtures. Springer; Cham, Switzerland: 2014.

Pekař M. Thermodynamic framework for design of reaction rate equations and schemes. Collect. Czech. Chem. Commun. 2009;74:1375–1401. doi: 10.1135/cccc2009010. DOI

Pekař M. Macroscopic derivation of the kinetic mass-action law. React. Kinet. Mech. Catal. 2010;99:29–35. doi: 10.1007/s11144-009-0101-6. DOI

Bowen R.M. On the Stoichiometry of Chemically Reacting Systems. Arch. Ration. Mech. Anal. 1968;29:114–124. doi: 10.1007/BF00281361. DOI

Pekař M. Rates of Reactions as a Mathematical Consequence of the Permanence of Atoms and the Role of Independent Reactions in the Description of Reaction Kinetics. Front. Chem. 2018;6:287. doi: 10.3389/fchem.2018.00287. PubMed DOI PMC

Pekař M. Thermodynamics and foundations of mass-action kinetics. Prog. React. Kinet. Mech. 2005;30:3–113. doi: 10.3184/007967405777874868. DOI

Pekař M. Thermodynamic analysis of chemically reacting mixtures—Comparison of first and second order models. Front. Chem. 2018;6:35. doi: 10.3389/fchem.2018.00035. PubMed DOI PMC

Samohýl I., Malijevský A. Phenomenological derivation of mass-action law of homogeneous chemical kinetics. Collect. Czech. Chem. Commun. 1976;41:2131–2142. doi: 10.1135/cccc19762131. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...