"Positive Regulation of RNA Metabolic Process" Ontology Group Highly Regulated in Porcine Oocytes Matured In Vitro: A Microarray Approach

. 2018 ; 2018 () : 2863068. [epub] 20180110

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29546053

The cumulus-oocyte complexes (COCs) growth and development during folliculogenesis and oogenesis are accompanied by changes involving synthesis and accumulation of large amount of RNA and proteins. In this study, the transcriptomic profile of genes involved in "oocytes RNA synthesis" in relation to in vitro maturation in pigs was investigated for the first time. The RNA was isolated from oocytes before and after in vitro maturation (IVM). Interactions between differentially expressed genes/proteins belonging to "positive regulation of RNA metabolic process" ontology group were investigated by STRING10 software. Using microarray assays, we found expression of 12258 porcine transcripts. Genes with fold change higher than |2| and with corrected p value lower than 0.05 were considered as differentially expressed. The ontology group "positive regulation of RNA metabolic process" involved differential expression of AR, INHBA, WWTR1, FOS, MEF2C, VEGFA, IKZF2, IHH, RORA, MAP3K1, NFAT5, SMARCA1, EGR1, EGR2, MITF, SMAD4, APP, and NR5A1 transcripts. Since all of the presented genes were downregulated after IVM, we suggested that they might be significantly involved in regulation of RNA synthesis before reaching oocyte MII stage. Higher expression of "RNA metabolic process" related genes before IVM indicated that they might be recognized as important markers and specific "transcriptomic fingerprint" of RNA template accumulation and storage for further porcine embryos growth and development.

Zobrazit více v PubMed

Budna J., Celichowski P., Karimi P., et al. Does Porcine Oocytes Maturation in Vitro is Regulated by Genes Involved in Transforming Growth Factor Beta Receptor Signaling Pathway? Advances in Cell Biology. 2017;5(1):1–14. doi: 10.1515/acb-2017-0001. DOI

Palma G. A., Argañaraz M. E., Barrera A. D., Rodler D., Mutto A. Á., Sinowatz F. Biology and Biotechnology of Follicle Development. The Scientific World Journal. 2012;2012:1–14. doi: 10.1100/2012/938138. PubMed DOI PMC

Yenuganti V. R., Baddela V. S., Baufeld A., Singh D., Vanselow J. The gene expression pattern induced by high plating density in cultured bovine and buffalo granulosa cells might be regulated by specific miRNA species. The Journal of Reproduction and Development. 2015;61(2):154–160. doi: 10.1262/jrd.2014-119. PubMed DOI PMC

Kranc W., Celichowski P., Budna J., et al. Positive Regulation of Macromolecule Metabolic Process Belongs to the Main Mechanisms Crucial for Porcine Oocytes Maturation. Advances in Cell Biology. 2017;5(1) doi: 10.1515/acb-2017-0002. DOI

Kranc W., Chachuła A., Bryja A., et al. Selected molecular and physiological aspects of mammalian ovarian granulosa cells in primary culture. Medycyna Weterynaryjna. 2016;72(12):723–727. doi: 10.21521/mw.5606. DOI

Jackowska M., Kempisty B., Antosik P., et al. The morphology of porcine oocytes is associated with zona pellucida glycoprotein transcript contents. Reproductive Biology. 2009;9(1):79–85. doi: 10.1016/S1642-431X(12)60097-7. PubMed DOI

Budna J., Bryja A., Celichowski P., et al. Genes of cellular components of morphogenesis in porcine oocytes before and after IVM. Reproduction. 2017;154(4):535–545. doi: 10.1530/REP-17-0367. PubMed DOI

Jopek K., Celichowski P., Szyszka M., et al. Transcriptome profile of rat adrenal evoked by gonadectomy and testosterone or estradiol replacement. Frontiers in Endocrinology. 2017;8, article no. 26 doi: 10.3389/fendo.2017.00026. PubMed DOI PMC

Trejter M., Hochol A., Tyczewska M., et al. Sex-related gene expression profiles in the adrenal cortex in the mature rat: Microarray analysis with emphasis on genes involved in steroidogenesis. International Journal of Molecular Medicine. 2015;35(3):702–714. doi: 10.3892/ijmm.2015.2064. PubMed DOI PMC

Von Mering C., Jensen L. J., Snel B., et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research. 2005;33(supplement 1):D433–D437. doi: 10.1093/nar/gki005. PubMed DOI PMC

Mootha V. K., Lindgren C. M., Eriksson K., et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics. 2003;34(3):267–273. doi: 10.1038/ng1180. PubMed DOI

Liberzon A., Birger C., Thorvaldsdóttir H., Ghandi M., Mesirov J. P., Tamayo P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Systems. 2015;1(6):417–425. doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC

Subramanian A., Tamayo P., Mootha V. K., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Acadamy of Sciences of the United States of America. 2005;102(43):15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC

Bukowska D., Kempisty B., Ciesi S., Ciesiółka S. Molekularne aspekty procesu dojrzewania jadrowego i cytoplazmatycznego oocyt≤w u swin. Medycyna Weterynaryjna. 2013;69(8):456–460.

Kranc W., Chachula A., Wojtanowicz-Markiewicz K., et al. The insight into developmental capacity of mammalian cocs and cumulus-granulosa cells-recent studies and perspectives. Austin Journal of Invitro Fertilization. 2015;2(3):p. 1.

Eppig J. J. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–838. doi: 10.1530/rep.0.1220829. PubMed DOI

Miyano T., Manabe N. Oocyte growth and acquisition of meiotic competence. Society of Reproduction and Fertility Supplement. 2007;63:531–538. PubMed

Chachula A., Kranc W., Budna J., et al. The differentiation of mammalian ovarian granulosa cells living in the shadow of cellular developmental capacity. Journal of Biological Regulators and Homeostatic Agents. 2016;30(3):627–634. PubMed

Ciesiółka S., Budna J., Bryja A., et al. Association between expression of cumulus expansion markers and real-time proliferation of porcine follicular granulosa cells in a primary cell culture model. Journal of Biological Regulators and Homeostatic Agents. 2016;30(4):971–984. PubMed

Velazquez F. N., Caputto B. L., Boussin F. D. c-Fos importance for brain development. AGING. 2015;7(12):1028–1029. doi: 10.18632/aging.100862. PubMed DOI PMC

Jin X. L., O'Neill C. Regulation of the expression of proto-oncogenes by autocrine embryotropins in the early mouse embryo. Biology of Reproduction. 2011;84(6):1216–1224. doi: 10.1095/biolreprod.110.087007. PubMed DOI

Regassa A., Rings F., Hoelker M., et al. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells. BMC Genomics. 2011;12, article no. 57 doi: 10.1186/1471-2164-12-57. PubMed DOI PMC

Hazzard T. M., Xu F., Stouffer R. L. Injection of soluble vascular endothelial growth factor receptor 1 into the preovulatory follicle disrupts ovulation and subsequent luteal function in rhesus monkeys. Biology of Reproduction. 2002;67(4):1305–1312. doi: 10.1095/biolreprod67.4.1305. PubMed DOI

Trau H. A., Brännström M., Curry T. E., Duffy D. M. Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Human Reproduction. 2015;31(2):436–444. doi: 10.1093/humrep/dev320. PubMed DOI PMC

Li S.-H., Hwu Y.-M., Lu C.-H., Chang H.-H., Hsieh C.-E., Lee R. K.-K. VEGF and FGF2 improve revascularization, survival, and oocyte quality of cryopreserved, subcutaneously-transplanted mouse ovarian tissues. International Journal of Molecular Sciences. 2016;17(8, article no. 1237) doi: 10.3390/ijms17081237. PubMed DOI PMC

Anchordoquy J. M., Anchordoquy J. P., Testa J. A., Sirini M. Á., Furnus C. C. Influence of vascular endothelial growth factor and Cysteamine on in vitro bovine oocyte maturation and subsequent embryo development. Cell Biology International. 2015;39(10):1090–1098. doi: 10.1002/cbin.10481. PubMed DOI

O'Donovan K. J., Tourtellotte W. G., Milbrandt J., Baraban J. M. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends in Neurosciences. 1999;22(4):167–173. doi: 10.1016/s0166-2236(98)01343-5. PubMed DOI

Duclot F., Kabbaj M. The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Frontiers in Behavioral Neuroscience. 2017;11, article no. 35 doi: 10.3389/fnbeh.2017.00035. PubMed DOI PMC

Li S., Miao T., Sebastian M., et al. The Transcription Factors Egr2 and Egr3 Are Essential for the Control of Inflammation and Antigen-Induced Proliferation of B and T Cells. Immunity. 2012;37(4):685–696. doi: 10.1016/j.immuni.2012.08.001. PubMed DOI PMC

Topilko P., Schneider-Maunoury S., Levi G., et al. Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)- targeted mice. Molecular Endocrinology. 1998;12(1):107–122. doi: 10.1210/me.12.1.107. PubMed DOI

Schippert R., Burkhardt E., Feldkaemper M., Schaeffel F. Relative axial myopia in Egr-1 (ZENK) knockout mice. Investigative Ophthalmology & Visual Science. 2007;48(1):11–17. doi: 10.1167/iovs.06-0851. PubMed DOI

Thiel G., Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. Journal of Cellular Physiology. 2002;193(3):287–292. doi: 10.1002/jcp.10178. PubMed DOI

Geh E., Meng Q., Mongan M., et al. Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure. Proceedings of the National Acadamy of Sciences of the United States of America. 2011;108(42):17349–17354. doi: 10.1073/pnas.1102297108. PubMed DOI PMC

Xia Y., Karin M. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends in Cell Biology. 2004;14(2):94–101. doi: 10.1016/j.tcb.2003.12.005. PubMed DOI

Massagué J. TGF-β signal transduction. Annual Review of Biochemistry. 1998;67(1):753–791. doi: 10.1146/annurev.biochem.67.1.753. PubMed DOI

Walters K. A. Role of androgens in normal and pathological ovarian function. Reproduction. 2015;149(4):R193–R218. doi: 10.1530/REP-14-0517. PubMed DOI

Burek M., Duda M., Knapczyk K., Koziorowski M., Słomczyńska M. Tissue-specific distribution of the androgen receptor (AR) in the porcine fetus. Acta Histochemica. 2007;109(5):358–365. doi: 10.1016/j.acthis.2007.03.003. PubMed DOI

Lenie S., Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biology of Reproduction. 2009;80(4):685–695. doi: 10.1095/biolreprod.107.067280. PubMed DOI

Sen A., Prizant H., Light A., et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proceedings of the National Acadamy of Sciences of the United States of America. 2014;111(8):3008–3013. doi: 10.1073/pnas.1318978111. PubMed DOI PMC

Abreu-Martin M. T., Chari A., Palladino A. A., Craft N. A., Sawyers C. L. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Molecular and Cellular Biology. 1999;19(7):5143–5154. doi: 10.1128/MCB.19.7.5143. PubMed DOI PMC

Shiina H., Matsumoto T., Sato T., et al. Premature ovarian failure in androgen receptor-deficient mice. Proceedings of the National Acadamy of Sciences of the United States of America. 2006;103(1):224–229. doi: 10.1073/pnas.0506736102. PubMed DOI PMC

Walters K. A., Allan C. M., Jimenez M., et al. Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology. 2007;148(8):3674–3684. doi: 10.1210/en.2007-0248. PubMed DOI

Sen A., Hammes S. R. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Molecular Endocrinology. 2010;24(7):1393–1403. doi: 10.1210/me.2010-0006. PubMed DOI PMC

Walters K. A., Middleton L. J., Joseph S. R., et al. Targeted loss of androgen receptor signaling in murine granulosa cells of preantral and antral follicles causes female subfertility. Biology of Reproduction. 2012;87(6, article no. 151) doi: 10.1095/biolreprod.112.102012. PubMed DOI

Ma Y., Andrisse S., Chen Y., et al. Androgen receptor in the ovary theca cells plays a critical role in androgen-induced reproductive dysfunction. Endocrinology. 2017;158(1):98–108. doi: 10.1210/en.2016-1608. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...