"Positive Regulation of RNA Metabolic Process" Ontology Group Highly Regulated in Porcine Oocytes Matured In Vitro: A Microarray Approach
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29546053
PubMed Central
PMC5818922
DOI
10.1155/2018/2863068
Knihovny.cz E-zdroje
- MeSH
- IVM techniky * MeSH
- kumulární buňky MeSH
- oocyty růst a vývoj metabolismus MeSH
- oogeneze genetika MeSH
- prasata MeSH
- RNA biosyntéza genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- transkriptom genetika MeSH
- vývojová regulace genové exprese genetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA MeSH
The cumulus-oocyte complexes (COCs) growth and development during folliculogenesis and oogenesis are accompanied by changes involving synthesis and accumulation of large amount of RNA and proteins. In this study, the transcriptomic profile of genes involved in "oocytes RNA synthesis" in relation to in vitro maturation in pigs was investigated for the first time. The RNA was isolated from oocytes before and after in vitro maturation (IVM). Interactions between differentially expressed genes/proteins belonging to "positive regulation of RNA metabolic process" ontology group were investigated by STRING10 software. Using microarray assays, we found expression of 12258 porcine transcripts. Genes with fold change higher than |2| and with corrected p value lower than 0.05 were considered as differentially expressed. The ontology group "positive regulation of RNA metabolic process" involved differential expression of AR, INHBA, WWTR1, FOS, MEF2C, VEGFA, IKZF2, IHH, RORA, MAP3K1, NFAT5, SMARCA1, EGR1, EGR2, MITF, SMAD4, APP, and NR5A1 transcripts. Since all of the presented genes were downregulated after IVM, we suggested that they might be significantly involved in regulation of RNA synthesis before reaching oocyte MII stage. Higher expression of "RNA metabolic process" related genes before IVM indicated that they might be recognized as important markers and specific "transcriptomic fingerprint" of RNA template accumulation and storage for further porcine embryos growth and development.
Department of Anatomy Poznan University of Medical Sciences Swiecickiego 6 St 60 781 Poznan Poland
Veterinary Center Nicolaus Copernicus University in Torun Gagarina 11 St 87 100 Torun Poland
Zobrazit více v PubMed
Budna J., Celichowski P., Karimi P., et al. Does Porcine Oocytes Maturation in Vitro is Regulated by Genes Involved in Transforming Growth Factor Beta Receptor Signaling Pathway? Advances in Cell Biology. 2017;5(1):1–14. doi: 10.1515/acb-2017-0001. DOI
Palma G. A., Argañaraz M. E., Barrera A. D., Rodler D., Mutto A. Á., Sinowatz F. Biology and Biotechnology of Follicle Development. The Scientific World Journal. 2012;2012:1–14. doi: 10.1100/2012/938138. PubMed DOI PMC
Yenuganti V. R., Baddela V. S., Baufeld A., Singh D., Vanselow J. The gene expression pattern induced by high plating density in cultured bovine and buffalo granulosa cells might be regulated by specific miRNA species. The Journal of Reproduction and Development. 2015;61(2):154–160. doi: 10.1262/jrd.2014-119. PubMed DOI PMC
Kranc W., Celichowski P., Budna J., et al. Positive Regulation of Macromolecule Metabolic Process Belongs to the Main Mechanisms Crucial for Porcine Oocytes Maturation. Advances in Cell Biology. 2017;5(1) doi: 10.1515/acb-2017-0002. DOI
Kranc W., Chachuła A., Bryja A., et al. Selected molecular and physiological aspects of mammalian ovarian granulosa cells in primary culture. Medycyna Weterynaryjna. 2016;72(12):723–727. doi: 10.21521/mw.5606. DOI
Jackowska M., Kempisty B., Antosik P., et al. The morphology of porcine oocytes is associated with zona pellucida glycoprotein transcript contents. Reproductive Biology. 2009;9(1):79–85. doi: 10.1016/S1642-431X(12)60097-7. PubMed DOI
Budna J., Bryja A., Celichowski P., et al. Genes of cellular components of morphogenesis in porcine oocytes before and after IVM. Reproduction. 2017;154(4):535–545. doi: 10.1530/REP-17-0367. PubMed DOI
Jopek K., Celichowski P., Szyszka M., et al. Transcriptome profile of rat adrenal evoked by gonadectomy and testosterone or estradiol replacement. Frontiers in Endocrinology. 2017;8, article no. 26 doi: 10.3389/fendo.2017.00026. PubMed DOI PMC
Trejter M., Hochol A., Tyczewska M., et al. Sex-related gene expression profiles in the adrenal cortex in the mature rat: Microarray analysis with emphasis on genes involved in steroidogenesis. International Journal of Molecular Medicine. 2015;35(3):702–714. doi: 10.3892/ijmm.2015.2064. PubMed DOI PMC
Von Mering C., Jensen L. J., Snel B., et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research. 2005;33(supplement 1):D433–D437. doi: 10.1093/nar/gki005. PubMed DOI PMC
Mootha V. K., Lindgren C. M., Eriksson K., et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics. 2003;34(3):267–273. doi: 10.1038/ng1180. PubMed DOI
Liberzon A., Birger C., Thorvaldsdóttir H., Ghandi M., Mesirov J. P., Tamayo P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Systems. 2015;1(6):417–425. doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC
Subramanian A., Tamayo P., Mootha V. K., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Acadamy of Sciences of the United States of America. 2005;102(43):15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Bukowska D., Kempisty B., Ciesi S., Ciesiółka S. Molekularne aspekty procesu dojrzewania jadrowego i cytoplazmatycznego oocyt≤w u swin. Medycyna Weterynaryjna. 2013;69(8):456–460.
Kranc W., Chachula A., Wojtanowicz-Markiewicz K., et al. The insight into developmental capacity of mammalian cocs and cumulus-granulosa cells-recent studies and perspectives. Austin Journal of Invitro Fertilization. 2015;2(3):p. 1.
Eppig J. J. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–838. doi: 10.1530/rep.0.1220829. PubMed DOI
Miyano T., Manabe N. Oocyte growth and acquisition of meiotic competence. Society of Reproduction and Fertility Supplement. 2007;63:531–538. PubMed
Chachula A., Kranc W., Budna J., et al. The differentiation of mammalian ovarian granulosa cells living in the shadow of cellular developmental capacity. Journal of Biological Regulators and Homeostatic Agents. 2016;30(3):627–634. PubMed
Ciesiółka S., Budna J., Bryja A., et al. Association between expression of cumulus expansion markers and real-time proliferation of porcine follicular granulosa cells in a primary cell culture model. Journal of Biological Regulators and Homeostatic Agents. 2016;30(4):971–984. PubMed
Velazquez F. N., Caputto B. L., Boussin F. D. c-Fos importance for brain development. AGING. 2015;7(12):1028–1029. doi: 10.18632/aging.100862. PubMed DOI PMC
Jin X. L., O'Neill C. Regulation of the expression of proto-oncogenes by autocrine embryotropins in the early mouse embryo. Biology of Reproduction. 2011;84(6):1216–1224. doi: 10.1095/biolreprod.110.087007. PubMed DOI
Regassa A., Rings F., Hoelker M., et al. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells. BMC Genomics. 2011;12, article no. 57 doi: 10.1186/1471-2164-12-57. PubMed DOI PMC
Hazzard T. M., Xu F., Stouffer R. L. Injection of soluble vascular endothelial growth factor receptor 1 into the preovulatory follicle disrupts ovulation and subsequent luteal function in rhesus monkeys. Biology of Reproduction. 2002;67(4):1305–1312. doi: 10.1095/biolreprod67.4.1305. PubMed DOI
Trau H. A., Brännström M., Curry T. E., Duffy D. M. Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Human Reproduction. 2015;31(2):436–444. doi: 10.1093/humrep/dev320. PubMed DOI PMC
Li S.-H., Hwu Y.-M., Lu C.-H., Chang H.-H., Hsieh C.-E., Lee R. K.-K. VEGF and FGF2 improve revascularization, survival, and oocyte quality of cryopreserved, subcutaneously-transplanted mouse ovarian tissues. International Journal of Molecular Sciences. 2016;17(8, article no. 1237) doi: 10.3390/ijms17081237. PubMed DOI PMC
Anchordoquy J. M., Anchordoquy J. P., Testa J. A., Sirini M. Á., Furnus C. C. Influence of vascular endothelial growth factor and Cysteamine on in vitro bovine oocyte maturation and subsequent embryo development. Cell Biology International. 2015;39(10):1090–1098. doi: 10.1002/cbin.10481. PubMed DOI
O'Donovan K. J., Tourtellotte W. G., Milbrandt J., Baraban J. M. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends in Neurosciences. 1999;22(4):167–173. doi: 10.1016/s0166-2236(98)01343-5. PubMed DOI
Duclot F., Kabbaj M. The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Frontiers in Behavioral Neuroscience. 2017;11, article no. 35 doi: 10.3389/fnbeh.2017.00035. PubMed DOI PMC
Li S., Miao T., Sebastian M., et al. The Transcription Factors Egr2 and Egr3 Are Essential for the Control of Inflammation and Antigen-Induced Proliferation of B and T Cells. Immunity. 2012;37(4):685–696. doi: 10.1016/j.immuni.2012.08.001. PubMed DOI PMC
Topilko P., Schneider-Maunoury S., Levi G., et al. Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)- targeted mice. Molecular Endocrinology. 1998;12(1):107–122. doi: 10.1210/me.12.1.107. PubMed DOI
Schippert R., Burkhardt E., Feldkaemper M., Schaeffel F. Relative axial myopia in Egr-1 (ZENK) knockout mice. Investigative Ophthalmology & Visual Science. 2007;48(1):11–17. doi: 10.1167/iovs.06-0851. PubMed DOI
Thiel G., Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. Journal of Cellular Physiology. 2002;193(3):287–292. doi: 10.1002/jcp.10178. PubMed DOI
Geh E., Meng Q., Mongan M., et al. Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure. Proceedings of the National Acadamy of Sciences of the United States of America. 2011;108(42):17349–17354. doi: 10.1073/pnas.1102297108. PubMed DOI PMC
Xia Y., Karin M. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends in Cell Biology. 2004;14(2):94–101. doi: 10.1016/j.tcb.2003.12.005. PubMed DOI
Massagué J. TGF-β signal transduction. Annual Review of Biochemistry. 1998;67(1):753–791. doi: 10.1146/annurev.biochem.67.1.753. PubMed DOI
Walters K. A. Role of androgens in normal and pathological ovarian function. Reproduction. 2015;149(4):R193–R218. doi: 10.1530/REP-14-0517. PubMed DOI
Burek M., Duda M., Knapczyk K., Koziorowski M., Słomczyńska M. Tissue-specific distribution of the androgen receptor (AR) in the porcine fetus. Acta Histochemica. 2007;109(5):358–365. doi: 10.1016/j.acthis.2007.03.003. PubMed DOI
Lenie S., Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biology of Reproduction. 2009;80(4):685–695. doi: 10.1095/biolreprod.107.067280. PubMed DOI
Sen A., Prizant H., Light A., et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proceedings of the National Acadamy of Sciences of the United States of America. 2014;111(8):3008–3013. doi: 10.1073/pnas.1318978111. PubMed DOI PMC
Abreu-Martin M. T., Chari A., Palladino A. A., Craft N. A., Sawyers C. L. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Molecular and Cellular Biology. 1999;19(7):5143–5154. doi: 10.1128/MCB.19.7.5143. PubMed DOI PMC
Shiina H., Matsumoto T., Sato T., et al. Premature ovarian failure in androgen receptor-deficient mice. Proceedings of the National Acadamy of Sciences of the United States of America. 2006;103(1):224–229. doi: 10.1073/pnas.0506736102. PubMed DOI PMC
Walters K. A., Allan C. M., Jimenez M., et al. Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology. 2007;148(8):3674–3684. doi: 10.1210/en.2007-0248. PubMed DOI
Sen A., Hammes S. R. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Molecular Endocrinology. 2010;24(7):1393–1403. doi: 10.1210/me.2010-0006. PubMed DOI PMC
Walters K. A., Middleton L. J., Joseph S. R., et al. Targeted loss of androgen receptor signaling in murine granulosa cells of preantral and antral follicles causes female subfertility. Biology of Reproduction. 2012;87(6, article no. 151) doi: 10.1095/biolreprod.112.102012. PubMed DOI
Ma Y., Andrisse S., Chen Y., et al. Androgen receptor in the ovary theca cells plays a critical role in androgen-induced reproductive dysfunction. Endocrinology. 2017;158(1):98–108. doi: 10.1210/en.2016-1608. PubMed DOI PMC