A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage

. 2018 Mar 16 ; 9 (1) : 1107. [epub] 20180316

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29549331

Grantová podpora
Wellcome Trust - United Kingdom
R01 CA095684 NCI NIH HHS - United States

Odkazy

PubMed 29549331
PubMed Central PMC5856786
DOI 10.1038/s41467-018-03441-3
PII: 10.1038/s41467-018-03441-3
Knihovny.cz E-zdroje

The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH). The chiral specificity of HZ05, a more potent analog, is revealed by the crystal structure of the (R)-HZ05/DHODH complex. Twelve other DHODH inhibitor chemotypes are detailed among the p53 activators, which identifies DHODH as a frequent target for structurally diverse compounds. We observe that HZ compounds accumulate cancer cells in S-phase, increase p53 synthesis, and synergize with an inhibitor of p53 degradation to reduce tumor growth in vivo. We, therefore, propose a strategy to promote cancer cell killing by p53 instead of its reversible cell cycle arresting effect.

Centre for Cancer Biomarkers CCBIO Department of Clinical Science Hematology Section University of Bergen 5021 Bergen Norway

Centre for Oncology and Molecular Medicine University of Dundee Ninewells Hospital and Medical School Dundee Tayside DD1 9SY UK

Chemical Biology Consortium Sweden Science for Life Laboratory Division of Translational Medicine and Chemical Biology Department of Medical Biochemistry and Biophysics Karolinska Institutet SE 171 21 Stockholm Sweden

Department of Breast Surgical Oncology MD Anderson Cancer Center Holcombe Boulevard Houston 77030 USA

Department of Medicinal Chemistry Science for Life Laboratories Uppsala University SE 751 23 Uppsala Sweden

Department of Medicine Haematology Section Haukeland University Hospital Bergen Norway

Department of Microbiology Tumor and Cell Biology Karolinska Institutet SE 171 77 Stockholm Sweden

Department of Pharmacy Uppsala University Drug Optimization and Pharmaceutical Profiling Platform Department of Pharmacy Uppsala University SE 752 37 Uppsala Sweden

Division of Hematology and Oncology Comprehensive Cancer Center 1720 2nd Avenue South NP2540 Birmingham AL 35294 3300 USA

Drug Discovery and Development Platform Science for Life Laboratory Tomtebodavägen 23 SE 171 21 Solna Sweden

Newcastle Cancer Centre Northern Institute for Cancer Research Newcastle University Newcastle NE1 7RU UK

RECAMO Masaryk Memorial Cancer Institute Zluty Kopec 7 65653 Brno Czech Republic

SARomics Biostructures Medicon Village SE 223 81 Lund Sweden

School of Chemistry and Biomedical Sciences Research Complex University of St Andrews and EaStCHEM St Andrews Fife Scotland KY16 9ST UK

SciLifeLab Department of Microbiology Tumor and Cell Biology Karolinska Institutet Tomtebodavägen 23 SE 171 21 Stockholm Sweden

The Wellcome Trust Centre for Cell Biology Institute of Cell Biology University of Edinburgh Edinburgh EH9 3JR UK

Erratum v

PubMed

Erratum v

PubMed

Zobrazit více v PubMed

Corbin AS, et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Invest. 2011;121:396–409. doi: 10.1172/JCI35721. PubMed DOI PMC

Li L, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 2012;21:266–281. doi: 10.1016/j.ccr.2011.12.020. PubMed DOI PMC

Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer. 2009;9:862–873. doi: 10.1038/nrc2763. PubMed DOI

Vassilev LT, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–848. doi: 10.1126/science.1092472. PubMed DOI

Kranz D, Dobbelstein M. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res. 2006;66:10274–10280. doi: 10.1158/0008-5472.CAN-06-1527. PubMed DOI

Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 2014;13:217–236. doi: 10.1038/nrd4236. PubMed DOI

Shen H, Moran DM, Maki CG. Transient nutlin-3a treatment promotes endoreduplication and the generation of therapy-resistant tetraploid cells. Cancer Res. 2008;68:8260–8268. doi: 10.1158/0008-5472.CAN-08-1901. PubMed DOI PMC

Baell J, Walters MA. Chemistry: chemical con artists foil drug discovery. Nature. 2014;513:481–483. doi: 10.1038/513481a. PubMed DOI

Fischer M, Uxa S, Stanko C, Magin TM, Engeland K. Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci. Rep. 2017;7:2603. doi: 10.1038/s41598-017-02831-9. PubMed DOI PMC

Munier-Lehmann H, Vidalain PO, Tangy F, Janin YL. On dihydroorotate dehydrogenases and their inhibitors and uses. J. Med. Chem. 2013;56:3148–3167. doi: 10.1021/jm301848w. PubMed DOI

Traut TW. Physiological concentrations of purines and pyrimidines. Mol. Cell Biochem. 1994;140:1–22. doi: 10.1007/BF00928361. PubMed DOI

Lain S, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell. 2008;13:454–463. doi: 10.1016/j.ccr.2008.03.004. PubMed DOI PMC

Walse B, et al. The structures of human dihydroorotate dehydrogenase with and without inhibitor reveal conformational flexibility in the inhibitor and substrate binding sites. Biochemistry. 2008;47:8929–8936. doi: 10.1021/bi8003318. PubMed DOI

Yamasaki K, Chuang VT, Maruyama T, Otagiri M. Albumin-drug interaction and its clinical implication. Biochim. Biophys. Acta. 2013;1830:5435–5443. doi: 10.1016/j.bbagen.2013.05.005. PubMed DOI

Dexter DL, et al. Activity of a novel 4-quinolinecarboxylic acid, NSC 368390 [6-fluoro-2-(2’-fluoro-1,1’-biphenyl-4-yl)-3-methyl-4-quinolinecarboxylic acid sodium salt], against experimental tumors. Cancer Res. 1985;45:5563–5568. PubMed

Loffler M, Jockel J, Schuster G, Becker C. Dihydroorotat-ubiquinone oxidoreductase links mitochondria in the biosynthesis of pyrimidine nucleotides. Mol. Cell Biochem. 1997;174:125–129. doi: 10.1023/A:1006859115450. PubMed DOI

Zhu J, et al. Design, synthesis, X-ray crystallographic analysis, and biological evaluation of thiazole derivatives as potent and selective inhibitors of human dihydroorotate dehydrogenase. J. Med. Chem. 2015;58:1123–1139. doi: 10.1021/jm501127s. PubMed DOI

Sykes DB, et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell. 2016;167:171–186 e15. doi: 10.1016/j.cell.2016.08.057. PubMed DOI PMC

Lewis TA, et al. Development of ML390: a human DHODH inhibitor that induces differentiation in acute myeloid leukemia. ACS Med Chem. Lett. 2016;7:1112–1117. doi: 10.1021/acsmedchemlett.6b00316. PubMed DOI PMC

Lucas-Hourani M, et al. Original 2-(3-Alkoxy-1H-pyrazol-1-yl)azines inhibitors of human dihydroorotate dehydrogenase (DHODH) J. Med. Chem. 2015;58:5579–5598. doi: 10.1021/acs.jmedchem.5b00606. PubMed DOI PMC

Lucas-Hourani M, et al. Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity. PLoS Pathog. 2013;9:e1003678. doi: 10.1371/journal.ppat.1003678. PubMed DOI PMC

Hoffmann HH, Kunz A, Simon VA, Palese P, Shaw ML. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc. Natl Acad. Sci. USA. 2011;108:5777–5782. doi: 10.1073/pnas.1101143108. PubMed DOI PMC

Wikoff WR, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA. 2009;106:3698–3703. doi: 10.1073/pnas.0812874106. PubMed DOI PMC

Brent RL. Teratogen update: reproductive risks of leflunomide (Arava); a pyrimidine synthesis inhibitor: counseling women taking leflunomide before or during pregnancy and men taking leflunomide who are contemplating fathering a child. Teratology. 2001;63:106–112. doi: 10.1002/1096-9926(200102)63:2<106::AID-TERA1017>3.0.CO;2-R. PubMed DOI

White RM, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature. 2011;471:518–522. doi: 10.1038/nature09882. PubMed DOI PMC

Brown KK, Spinelli JB, Asara JM, Toker A. Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer. Cancer Discov. 2017;7:391–399. doi: 10.1158/2159-8290.CD-16-0611. PubMed DOI PMC

Mathur D, et al. PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition. Cancer Discov. 2017;7:380–390. doi: 10.1158/2159-8290.CD-16-0612. PubMed DOI PMC

Khutornenko AA, et al. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc. Natl Acad. Sci. USA. 2010;107:12828–12833. doi: 10.1073/pnas.0910885107. PubMed DOI PMC

Hoppe-Seyler K, Weigand K, Lohrey C, Hoppe-Seyler F, Sauer P. Cellular growth inhibition by FK778 is linked to G1 arrest or S phase accumulation, dependent on the functional status of the retinoblastoma protein. Int. J. Mol. Med. 2009;23:415–420. doi: 10.3892/ijmm_00000146. PubMed DOI

Reisman D, Takahashi P, Polson A, Boggs K. Transcriptional regulation of the p53 tumor suppressor gene in S-phase of the cell-cycle and the cellular response to DNA damage. Biochem. Res. Int. 2012;2012:808934. doi: 10.1155/2012/808934. PubMed DOI PMC

Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005;123:49–63. doi: 10.1016/j.cell.2005.07.034. PubMed DOI

Frebourg, T. et al. A functional screen for germ line p53 mutations based on transcriptional activation. Cancer Res52, 6976–6978 (1992). PubMed

Lu, X., Burbidge, S.A., Griffin, S. & Smith, H.M. Discordance between accumulated p53 protein level and its transcriptional activity in response to u.v. radiation. Oncogene13, 413–418 (1996). PubMed

Blaydes, J.P. & Hupp, T.R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene17, 1045–1052 (1998). PubMed

Skehan P, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl Cancer Inst. 1990;82:1107–1112. doi: 10.1093/jnci/82.13.1107. PubMed DOI

Renzing J, Hansen S, Lane DP. Oxidative stress is involved in the UV activation of p53. J. Cell Sci. 1996;109:1105–1112. doi: 10.1242/jcs.109.5.1105. PubMed DOI

Martinez Molina D, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–87. doi: 10.1126/science.1233606. PubMed DOI

Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...