A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
R01 CA095684
NCI NIH HHS - United States
PubMed
29549331
PubMed Central
PMC5856786
DOI
10.1038/s41467-018-03441-3
PII: 10.1038/s41467-018-03441-3
Knihovny.cz E-zdroje
- MeSH
- antitumorózní látky farmakologie MeSH
- buněčný cyklus účinky léků MeSH
- dihydroorotátdehydrogenasa MeSH
- indazoly farmakologie MeSH
- inhibitory enzymů farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- nádory farmakoterapie enzymologie genetika metabolismus MeSH
- oxidoreduktasy působící na CH-CH vazby antagonisté a inhibitory chemie genetika metabolismus MeSH
- proliferace buněk účinky léků MeSH
- proteolýza účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antitumorózní látky MeSH
- dihydroorotátdehydrogenasa MeSH
- indazoly MeSH
- inhibitory enzymů MeSH
- nádorový supresorový protein p53 MeSH
- oxidoreduktasy působící na CH-CH vazby MeSH
The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH). The chiral specificity of HZ05, a more potent analog, is revealed by the crystal structure of the (R)-HZ05/DHODH complex. Twelve other DHODH inhibitor chemotypes are detailed among the p53 activators, which identifies DHODH as a frequent target for structurally diverse compounds. We observe that HZ compounds accumulate cancer cells in S-phase, increase p53 synthesis, and synergize with an inhibitor of p53 degradation to reduce tumor growth in vivo. We, therefore, propose a strategy to promote cancer cell killing by p53 instead of its reversible cell cycle arresting effect.
Department of Medicine Haematology Section Haukeland University Hospital Bergen Norway
Department of Microbiology Tumor and Cell Biology Karolinska Institutet SE 171 77 Stockholm Sweden
RECAMO Masaryk Memorial Cancer Institute Zluty Kopec 7 65653 Brno Czech Republic
SARomics Biostructures Medicon Village SE 223 81 Lund Sweden
Zobrazit více v PubMed
Corbin AS, et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Invest. 2011;121:396–409. doi: 10.1172/JCI35721. PubMed DOI PMC
Li L, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 2012;21:266–281. doi: 10.1016/j.ccr.2011.12.020. PubMed DOI PMC
Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer. 2009;9:862–873. doi: 10.1038/nrc2763. PubMed DOI
Vassilev LT, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–848. doi: 10.1126/science.1092472. PubMed DOI
Kranz D, Dobbelstein M. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res. 2006;66:10274–10280. doi: 10.1158/0008-5472.CAN-06-1527. PubMed DOI
Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 2014;13:217–236. doi: 10.1038/nrd4236. PubMed DOI
Shen H, Moran DM, Maki CG. Transient nutlin-3a treatment promotes endoreduplication and the generation of therapy-resistant tetraploid cells. Cancer Res. 2008;68:8260–8268. doi: 10.1158/0008-5472.CAN-08-1901. PubMed DOI PMC
Baell J, Walters MA. Chemistry: chemical con artists foil drug discovery. Nature. 2014;513:481–483. doi: 10.1038/513481a. PubMed DOI
Fischer M, Uxa S, Stanko C, Magin TM, Engeland K. Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci. Rep. 2017;7:2603. doi: 10.1038/s41598-017-02831-9. PubMed DOI PMC
Munier-Lehmann H, Vidalain PO, Tangy F, Janin YL. On dihydroorotate dehydrogenases and their inhibitors and uses. J. Med. Chem. 2013;56:3148–3167. doi: 10.1021/jm301848w. PubMed DOI
Traut TW. Physiological concentrations of purines and pyrimidines. Mol. Cell Biochem. 1994;140:1–22. doi: 10.1007/BF00928361. PubMed DOI
Lain S, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell. 2008;13:454–463. doi: 10.1016/j.ccr.2008.03.004. PubMed DOI PMC
Walse B, et al. The structures of human dihydroorotate dehydrogenase with and without inhibitor reveal conformational flexibility in the inhibitor and substrate binding sites. Biochemistry. 2008;47:8929–8936. doi: 10.1021/bi8003318. PubMed DOI
Yamasaki K, Chuang VT, Maruyama T, Otagiri M. Albumin-drug interaction and its clinical implication. Biochim. Biophys. Acta. 2013;1830:5435–5443. doi: 10.1016/j.bbagen.2013.05.005. PubMed DOI
Dexter DL, et al. Activity of a novel 4-quinolinecarboxylic acid, NSC 368390 [6-fluoro-2-(2’-fluoro-1,1’-biphenyl-4-yl)-3-methyl-4-quinolinecarboxylic acid sodium salt], against experimental tumors. Cancer Res. 1985;45:5563–5568. PubMed
Loffler M, Jockel J, Schuster G, Becker C. Dihydroorotat-ubiquinone oxidoreductase links mitochondria in the biosynthesis of pyrimidine nucleotides. Mol. Cell Biochem. 1997;174:125–129. doi: 10.1023/A:1006859115450. PubMed DOI
Zhu J, et al. Design, synthesis, X-ray crystallographic analysis, and biological evaluation of thiazole derivatives as potent and selective inhibitors of human dihydroorotate dehydrogenase. J. Med. Chem. 2015;58:1123–1139. doi: 10.1021/jm501127s. PubMed DOI
Sykes DB, et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell. 2016;167:171–186 e15. doi: 10.1016/j.cell.2016.08.057. PubMed DOI PMC
Lewis TA, et al. Development of ML390: a human DHODH inhibitor that induces differentiation in acute myeloid leukemia. ACS Med Chem. Lett. 2016;7:1112–1117. doi: 10.1021/acsmedchemlett.6b00316. PubMed DOI PMC
Lucas-Hourani M, et al. Original 2-(3-Alkoxy-1H-pyrazol-1-yl)azines inhibitors of human dihydroorotate dehydrogenase (DHODH) J. Med. Chem. 2015;58:5579–5598. doi: 10.1021/acs.jmedchem.5b00606. PubMed DOI PMC
Lucas-Hourani M, et al. Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity. PLoS Pathog. 2013;9:e1003678. doi: 10.1371/journal.ppat.1003678. PubMed DOI PMC
Hoffmann HH, Kunz A, Simon VA, Palese P, Shaw ML. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc. Natl Acad. Sci. USA. 2011;108:5777–5782. doi: 10.1073/pnas.1101143108. PubMed DOI PMC
Wikoff WR, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA. 2009;106:3698–3703. doi: 10.1073/pnas.0812874106. PubMed DOI PMC
Brent RL. Teratogen update: reproductive risks of leflunomide (Arava); a pyrimidine synthesis inhibitor: counseling women taking leflunomide before or during pregnancy and men taking leflunomide who are contemplating fathering a child. Teratology. 2001;63:106–112. doi: 10.1002/1096-9926(200102)63:2<106::AID-TERA1017>3.0.CO;2-R. PubMed DOI
White RM, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature. 2011;471:518–522. doi: 10.1038/nature09882. PubMed DOI PMC
Brown KK, Spinelli JB, Asara JM, Toker A. Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer. Cancer Discov. 2017;7:391–399. doi: 10.1158/2159-8290.CD-16-0611. PubMed DOI PMC
Mathur D, et al. PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition. Cancer Discov. 2017;7:380–390. doi: 10.1158/2159-8290.CD-16-0612. PubMed DOI PMC
Khutornenko AA, et al. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc. Natl Acad. Sci. USA. 2010;107:12828–12833. doi: 10.1073/pnas.0910885107. PubMed DOI PMC
Hoppe-Seyler K, Weigand K, Lohrey C, Hoppe-Seyler F, Sauer P. Cellular growth inhibition by FK778 is linked to G1 arrest or S phase accumulation, dependent on the functional status of the retinoblastoma protein. Int. J. Mol. Med. 2009;23:415–420. doi: 10.3892/ijmm_00000146. PubMed DOI
Reisman D, Takahashi P, Polson A, Boggs K. Transcriptional regulation of the p53 tumor suppressor gene in S-phase of the cell-cycle and the cellular response to DNA damage. Biochem. Res. Int. 2012;2012:808934. doi: 10.1155/2012/808934. PubMed DOI PMC
Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005;123:49–63. doi: 10.1016/j.cell.2005.07.034. PubMed DOI
Frebourg, T. et al. A functional screen for germ line p53 mutations based on transcriptional activation. Cancer Res52, 6976–6978 (1992). PubMed
Lu, X., Burbidge, S.A., Griffin, S. & Smith, H.M. Discordance between accumulated p53 protein level and its transcriptional activity in response to u.v. radiation. Oncogene13, 413–418 (1996). PubMed
Blaydes, J.P. & Hupp, T.R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene17, 1045–1052 (1998). PubMed
Skehan P, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl Cancer Inst. 1990;82:1107–1112. doi: 10.1093/jnci/82.13.1107. PubMed DOI
Renzing J, Hansen S, Lane DP. Oxidative stress is involved in the UV activation of p53. J. Cell Sci. 1996;109:1105–1112. doi: 10.1242/jcs.109.5.1105. PubMed DOI
Martinez Molina D, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–87. doi: 10.1126/science.1233606. PubMed DOI
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI