Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables

. 2018 Mar 22 ; 20 (3) : e110. [epub] 20180322

Jazyk angličtina Země Kanada Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29567635

BACKGROUND: New fitness trackers and smartwatches are released to the consumer market every year. These devices are equipped with different sensors, algorithms, and accompanying mobile apps. With recent advances in mobile sensor technology, privately collected physical activity data can be used as an addition to existing methods for health data collection in research. Furthermore, data collected from these devices have possible applications in patient diagnostics and treatment. With an increasing number of diverse brands, there is a need for an overview of device sensor support, as well as device applicability in research projects. OBJECTIVE: The objective of this study was to examine the availability of wrist-worn fitness wearables and analyze availability of relevant fitness sensors from 2011 to 2017. Furthermore, the study was designed to assess brand usage in research projects, compare common brands in terms of developer access to collected health data, and features to consider when deciding which brand to use in future research. METHODS: We searched for devices and brand names in six wearable device databases. For each brand, we identified additional devices on official brand websites. The search was limited to wrist-worn fitness wearables with accelerometers, for which we mapped brand, release year, and supported sensors relevant for fitness tracking. In addition, we conducted a Medical Literature Analysis and Retrieval System Online (MEDLINE) and ClinicalTrials search to determine brand usage in research projects. Finally, we investigated developer accessibility to the health data collected by identified brands. RESULTS: We identified 423 unique devices from 132 different brands. Forty-seven percent of brands released only one device. Introduction of new brands peaked in 2014, and the highest number of new devices was introduced in 2015. Sensor support increased every year, and in addition to the accelerometer, a photoplethysmograph, for estimating heart rate, was the most common sensor. Out of the brands currently available, the five most often used in research projects are Fitbit, Garmin, Misfit, Apple, and Polar. Fitbit is used in twice as many validation studies as any other brands and is registered in ClinicalTrials studies 10 times as often as other brands. CONCLUSIONS: The wearable landscape is in constant change. New devices and brands are released every year, promising improved measurements and user experience. At the same time, other brands disappear from the consumer market for various reasons. Advances in device quality offer new opportunities for research. However, only a few well-established brands are frequently used in research projects, and even less are thoroughly validated.

Zobrazit více v PubMed

World Health Organization. [2017-09-11]. Physical activity http://www.who.int/mediacentre/factsheets/fs385/en .

Emaus A, Degerstrøm J, Wilsgaard T, Hansen BH, Dieli-Conwright CM, Furberg AS, Pettersen SA, Andersen LB, Eggen AE, Bernstein L, Thune I. Does a variation in self-reported physical activity reflect variation in objectively measured physical activity, resting heart rate, and physical fitness? Results from the Tromso study. Scand J Public Health. 2010 Nov;38(5 Suppl):105–18. doi: 10.1177/1403494810378919.38/5_suppl/105 PubMed DOI

World Health Organization. 2017. [2017-09-11]. Global Strategy on Diet, Physical Activity and Health http://www.who.int/dietphysicalactivity/pa/en .

Finkelstein EA, Haaland BA, Bilger M, Sahasranaman A, Sloan RA, Nang EE, Evenson KR. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol. 2016 Dec;4(12):983–995. doi: 10.1016/S2213-8587(16)30284-4.S2213-8587(16)30284-4 PubMed DOI

Jakicic JM, Davis KK, Rogers RJ, King WC, Marcus MD, Helsel D, Rickman AD, Wahed AS, Belle SH. Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. J Am Med Assoc. 2016 Sep 20;316(11):1161–1171. doi: 10.1001/jama.2016.12858.2553448 PubMed DOI PMC

IDC. [2018-03-01]. Wearables Aren't Dead, They're Just Shifting Focus as the Market Grows 16.9% in the Fourth Quarter, According to IDC https://www.idc.com/getdoc.jsp?containerId=prUS42342317 .

IDC. [2018-03-01]. Xiaomi and Apple Tie for the Top Position as the Wearables Market Swells 17.9% During the First Quarter https://www.idc.com/getdoc.jsp?containerId=prUS42707517 .

de Arriba-Perez F, Caeiro-Rodríguez M, Santos-Gago JM. Collection and processing of data from wrist wearable devices in heterogeneous and multiple-user scenarios. Sensors (Basel) 2016 Sep 21;16(9) doi: 10.3390/s16091538. s16091538 PubMed DOI PMC

Kaewkannate K, Kim S. A comparison of wearable fitness devices. BMC Public Health. 2016 May 24;16:433. doi: 10.1186/s12889-016-3059-0. 10.1186/s12889-016-3059-0 PubMed DOI PMC

Sanders JP, Loveday A, Pearson N, Edwardson C, Yates T, Biddle SJ, Esliger DW. Devices for self-monitoring sedentary time or physical activity: a scoping review. J Med Internet Res. 2016 May 04;18(5):e90. doi: 10.2196/jmir.5373. v18i5e90 PubMed DOI PMC

Corder K, Brage S, Ekelund U. Accelerometers and pedometers: methodology and clinical application. Curr Opin Clin Nutr Metab Care. 2007 Sep;10(5):597–603. doi: 10.1097/MCO.0b013e328285d883.00075197-200709000-00006 PubMed DOI

ActiGraph Corp. [2017-09-11]. ActiGraph http://actigraphcorp.com/

Reid RE, Insogna JA, Carver TE, Comptour AM, Bewski NA, Sciortino C, Andersen RE. Validity and reliability of Fitbit activity monitors compared to ActiGraph GT3X+ with female adults in a free-living environment. J Sci Med Sport. 2017 Jun;20(6):578–582. doi: 10.1016/j.jsams.2016.10.015.S1440-2440(16)30231-6 PubMed DOI

Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015 Dec 18;12:159. doi: 10.1186/s12966-015-0314-1. 10.1186/s12966-015-0314-1 PubMed DOI PMC

Richardson S, Mackinnon D. [2018-03-01]. Left to their own devices? Privacy implications of wearable technology in Canadian workplaces http://www.sscqueens.org/publications/left-to-their-own-devices .

Wagenaar RC, Sapir I, Zhang Y, Markovic S, Vaina LM, Little TD. Continuous monitoring of functional activities using wearable, wireless gyroscope and accelerometer technology. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:4844–7. doi: 10.1109/IEMBS.2011.6091200. PubMed DOI

Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007 Mar;28(3):R1–39. doi: 10.1088/0967-3334/28/3/R01.S0967-3334(07)14869-3 PubMed DOI

Kim SH, Ryoo DW, Bae C. Adaptive noise cancellation Using accelerometers for the PPG signal from forehead. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:2564–7. doi: 10.1109/IEMBS.2007.4352852. PubMed DOI

Casson AJ, Vazquez Galvez A, Jarchi D. Gyroscope vs. accelerometer measurements of motion from wrist PPG during physical exercise. ICT Express. 2016 Dec;2(4):175–179. doi: 10.1016/j.icte.2016.11.003. DOI

Richardson SM, Mackinnon D. Queen's University. 2017. Wearable Device Inventory, Queen's University.

Vandrico. 2017. [2017-07-08]. The wearables database http://vandrico.com/wearables/

GSM Arena. 2017. [2017-07-08]. http://www.gsmarena.com/results.php3?sFormFactors=8 .

Wearables. 2017. [2017-07-08]. Wearables.Com: Helping you make sense of wearable tech http://www.wearables.com/devices/

Smartwatches. 2017. [2017-07-08]. SpecBucket: Smart Watches https://smartwatches.specbucket.com/

Prisguiden. 2017. [2017-07-08]. Smartklokke https://prisguiden.no/kategorier/smartklokke .

Prisguiden. 2017. [2017-07-08]. Aktivitetsarmband https://prisguiden.no/kategorier/aktivitetsarmband .

Business Wire. 2016. [2008-03-01]. The Worldwide Wearables Market Leaps 126.9% in the Fourth Quarter and 171.6% in 2015 https://www.businesswire.com/news/home/20160223005496/en/Worldwide-Wearables-Market-Leaps-126.9-Fourth-Quarter .

Balto JM, Kinnett-Hopkins DL, Motl RW. Accuracy and precision of smartphone applications and commercially available motion sensors in multiple sclerosis. Mult Scler J Exp Transl Clin. 2016;2:2055217316634754. doi: 10.1177/2055217316634754. 10.1177_2055217316634754 PubMed DOI PMC

Shcherbina A, Mattsson CM, Waggott D, Salisbury H, Christle JW, Hastie T, Wheeler MT, Ashley EA. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J Pers Med. 2017 May 24;7(2) doi: 10.3390/jpm7020003. jpm7020003 PubMed DOI PMC

Wallen MP, Gomersall SR, Keating SE, Wisløff U, Coombes JS. Accuracy of heart rate watches: implications for weight management. PLoS One. 2016;11(5):e0154420. doi: 10.1371/journal.pone.0154420. PONE-D-15-55600 PubMed DOI PMC

Chow JJ, Thom JM, Wewege MA, Ward RE, Parmenter BJ. Accuracy of step count measured by physical activity monitors: The effect of gait speed and anatomical placement site. Gait Posture. 2017 Sep;57:199–203. doi: 10.1016/j.gaitpost.2017.06.012.S0966-6362(17)30235-7 PubMed DOI

Chen MD, Kuo CC, Pellegrini CA, Hsu MJ. Accuracy of wristband activity monitors during ambulation and activities. Med Sci Sports Exerc. 2016 Dec;48(10):1942–9. doi: 10.1249/MSS.0000000000000984. PubMed DOI

Duncan M, Murawski B, Short CE, Rebar AL, Schoeppe S, Alley S, Vandelanotte C, Kirwan M. Activity trackers implement different behavior change techniques for activity, sleep, and sedentary behaviors. Interact J Med Res. 2017 Aug 14;6(2):e13. doi: 10.2196/ijmr.6685. v6i2e13 PubMed DOI PMC

Sprint G, Cook D, Weeks D, Dahmen J, La Fleur A. Analyzing sensor-based time series data to track changes in physical activity during inpatient rehabilitation. Sensors (Basel) 2017 Sep 27;17(10) doi: 10.3390/s17102219. s17102219 PubMed DOI PMC

Chowdhury EA, Western MJ, Nightingale TE, Peacock OJ, Thompson D. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PLoS One. 2017;12(2):e0171720. doi: 10.1371/journal.pone.0171720. PONE-D-16-36931 PubMed DOI PMC

Mercer K, Li M, Giangregorio L, Burns C, Grindrod K. Behavior change techniques present in wearable activity trackers: a critical analysis. JMIR Mhealth Uhealth. 2016;4(2):e40. doi: 10.2196/mhealth.4461. v4i2e40 PubMed DOI PMC

Gaudet J, Gallant F, Bélanger M. A bit of fit: minimalist intervention in adolescents based on a physical activity tracker. JMIR Mhealth Uhealth. 2017 Jul 06;5(7):e92. doi: 10.2196/mhealth.7647. v5i7e92 PubMed DOI PMC

Jacobsen RM, Ginde S, Mussatto K, Neubauer J, Earing M, Danduran M. Can a home-based cardiac physical activity program improve the physical function quality of life in children with fontan circulation? Congenit Heart Dis. 2016;11(2):175–82. doi: 10.1111/chd.12330. PubMed DOI

Ridgers ND, Timperio A, Brown H, Ball K, Macfarlane S, Lai SK, Richards K, Ngan W, Salmon J. A cluster-randomised controlled trial to promote physical activity in adolescents: the Raising Awareness of Physical Activity (RAW-PA) Study. BMC Public Health. 2017 Jan 04;17(1):6. doi: 10.1186/s12889-016-3945-5. 10.1186/s12889-016-3945-5 PubMed DOI PMC

Li LC, Sayre EC, Xie H, Clayton C, Feehan LM. A community-based physical activity counselling program for people with knee osteoarthritis: feasibility and preliminary efficacy of the track-OA study. JMIR Mhealth Uhealth. 2017 Jun 26;5(6):e86. doi: 10.2196/mhealth.7863. v5i6e86 PubMed DOI PMC

Dondzila C, Garner D. Comparative accuracy of fitness tracking modalities in quantifying energy expenditure. J Med Eng Technol. 2016 Aug;40(6):325–9. doi: 10.1080/03091902.2016.1197978. PubMed DOI

Bellone GJ, Plano SA, Cardinali DP, Chada DP, Vigo DE, Golombek DA. Comparative analysis of actigraphy performance in healthy young subjects. Sleep Sci. 2016;9(4):272–279. doi: 10.1016/j.slsci.2016.05.004. S1984-0063(16)30023-2 PubMed DOI PMC

Bai Y, Welk GJ, Nam YH, Lee JA, Lee JM, Kim Y, Meier NF, Dixon PM. Comparison of consumer and research monitors under semistructured settings. Med Sci Sports Exerc. 2016;48(1):151–8. doi: 10.1249/MSS.0000000000000727. PubMed DOI

Lee HA, Lee HJ, Moon JH, Lee T, Kim MG, In H, Cho CH, Kim L. Comparison of wearable activity tracker with actigraphy for sleep evaluation and circadian rest-activity rhythm measurement in healthy young adults. Psychiatry Investig. 2017 Mar;14(2):179–185. doi: 10.4306/pi.2017.14.2.179. PubMed DOI PMC

Chu AH, Ng SH, Paknezhad M, Gauterin A, Koh D, Brown MS, Müller-Riemenschneider F. Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults. PLoS One. 2017;12(2):e0172535. doi: 10.1371/journal.pone.0172535. PONE-D-16-33057 PubMed DOI PMC

Brooke SM, An HS, Kang SK, Noble JM, Berg KE, Lee JM. Concurrent validity of wearable activity trackers under free-living conditions. J Strength Cond Res. 2017 Apr;31(4):1097–1106. doi: 10.1519/JSC.0000000000001571. PubMed DOI

Block VJ, Lizée A, Crabtree-Hartman E, Bevan CJ, Graves JS, Bove R, Green AJ, Nourbakhsh B, Tremblay M, Gourraud P, Ng MY, Pletcher MJ, Olgin JE, Marcus GM, Allen DD, Cree BA, Gelfand JM. Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. J Neurol. 2017 Feb;264(2):316–326. doi: 10.1007/s00415-016-8334-6.10.1007/s00415-016-8334-6 PubMed DOI PMC

Morhardt DR, Luckenbaugh A, Goldstein C, Faerber GJ. Determining resident sleep during and after call with commercial sleep monitoring devices. Urology. 2017 Aug;106:39–44. doi: 10.1016/j.urology.2017.03.059.S0090-4295(17)30483-1 PubMed DOI

Dooley EE, Golaszewski NM, Bartholomew JB. Estimating accuracy at exercise intensities: a comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR Mhealth Uhealth. 2017 Mar 16;5(3):e34. doi: 10.2196/mhealth.7043. v5i3e34 PubMed DOI PMC

Leth S, Hansen J, Nielsen OW, Dinesen B. Evaluation of commercial self-monitoring devices for clinical purposes: results from the Future Patient Trial, Phase I. Sensors (Basel, Switzerland) 2017;17(1):1–11. PubMed PMC

Bian J, Guo Y, Xie M, Parish AE, Wardlaw I, Brown R, Modave F, Zheng D, Perry TT. Exploring the association between self-reported asthma impact and Fitbit-derived sleep quality and physical activity measures in adolescents. JMIR Mhealth Uhealth. 2017 Jul 25;5(7):e105. doi: 10.2196/mhealth.7346. v5i7e105 PubMed DOI PMC

Coughlin SS, Hatzigeorgiou C, Anglin J, Xie D, Besenyi GM, De Leo G, Stewart J, Wilkins T. Healthy lifestyle intervention for adult clinic patients with type 2 diabetes mellitus. Diabetes Manag (Lond) 2017;7(2):197–204. PubMed PMC

Åkerberg A, Koshmak G, Johansson A, Lindén M. Heart rate measurement as a tool to quantify sedentary behavior. Stud Health Technol Inform. 2015;211:105–10. PubMed

Stahl SE, An HS, Dinkel DM, Noble JM, Lee JM. How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport Exerc Med. 2016;2(1):1–7. doi: 10.1136/bmjsem-2015-000106. PubMed DOI PMC

Alinia P, Cain C, Fallahzadeh R, Shahrokni A, Cook D, Ghasemzadeh H. How accurate is your activity tracker? A comparative study of step counts in low-intensity physical activities. JMIR Mhealth Uhealth. 2017 Aug 11;5(8):e106. doi: 10.2196/mhealth.6321. v5i8e106 PubMed DOI PMC

Winslow BD, Nguyen N, Venta KE. Improved mental acuity forecasting with an individualized quantitative sleep model. Front Neurol. 2017;8:160. doi: 10.3389/fneur.2017.00160. doi: 10.3389/fneur.2017.00160. PubMed DOI PMC

Spiotta AM, Fargen KM, Denham SL, Fulton ME, Kellogg R, Young E, Patel S, Turner RD. Incorporation of a physical education and nutrition program into neurosurgery: a proof of concept pilot program. Neurosurgery. 2016 Oct;79(4):613–9. doi: 10.1227/NEU.0000000000001358. PubMed DOI

Modave F, Guo Y, Bian J, Gurka MJ, Parish A, Smith MD, Lee AM, Buford TW. Mobile device accuracy for step counting across age groups. JMIR Mhealth Uhealth. 2017 Jun 28;5(6):e88. doi: 10.2196/mhealth.7870. v5i6e88 PubMed DOI PMC

Dominick GM, Winfree KN, Pohlig RT, Papas MA. Physical activity assessment between consumer- and research-grade accelerometers: a comparative study in free-living conditions. JMIR Mhealth Uhealth. 2016 Sep 19;4(3):e110. doi: 10.2196/mhealth.6281. v4i3e110 PubMed DOI PMC

Schoenfelder E, Moreno M, Wilner M, Whitlock KB, Mendoza JA. Piloting a mobile health intervention to increase physical activity for adolescents with ADHD. Prev Med Rep. 2017 Jun;6:210–213. doi: 10.1016/j.pmedr.2017.03.003. S2211-3355(17)30045-1 PubMed DOI PMC

Kooiman TJ, Dontje ML, Sprenger SR, Krijnen WP, van der Schans CP, de Groot M. Reliability and validity of ten consumer activity trackers. BMC Sports Sci Med Rehabil. 2015;7:24. doi: 10.1186/s13102-015-0018-5. 18 PubMed DOI PMC

Fokkema T, Kooiman TJ, Krijnen WP, van der Schans CP, de Groot M. Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc. 2017 Apr;49(4):793–800. doi: 10.1249/MSS.0000000000001146.00005768-201704000-00021 PubMed DOI

Mantua J, Gravel N, Spencer RM. Reliability of sleep measures from four personal health monitoring devices compared to research-based actigraphy and polysomnography. Sensors (Basel) 2016 Dec 05;16(5) doi: 10.3390/s16050646. s16050646 PubMed DOI PMC

Chen JL, Guedes CM, Cooper BA, Lung AE. Short-term efficacy of an innovative mobile phone technology-based intervention for weight management for overweight and obese adolescents: pilot study. Interact J Med Res. 2017 Aug 02;6(2):e12. doi: 10.2196/ijmr.7860. v6i2e12 PubMed DOI PMC

Reichardt LA, Aarden JJ, van Seben R, van der Schaaf M, Engelbert RH, Bosch JA, Buurman BM, Hospital-ADL study group Unravelling the potential mechanisms behind hospitalization-associated disability in older patients; the Hospital-Associated Disability and impact on daily Life (Hospital-ADL) cohort study protocol. BMC Geriatr. 2016 Mar 05;16:59. doi: 10.1186/s12877-016-0232-3. 10.1186/s12877-016-0232-3 PubMed DOI PMC

Laranjo L, Lau AY, Martin P, Tong HL, Coiera E. Use of a mobile social networking intervention for weight management: a mixed-methods study protocol. Br Med J Open. 2017 Jul 12;7(7):e016665. doi: 10.1136/bmjopen-2017-016665. bmjopen-2017-016665 PubMed DOI PMC

Pumper MA, Mendoza JA, Arseniev-Koehler A, Holm M, Waite A, Moreno MA. Using a Facebook group as an adjunct to a pilot mHealth physical activity intervention: a mixed methods approach. Stud Health Technol Inform. 2015;219:97–101. PubMed

Cook JD, Prairie ML, Plante DT. Utility of the Fitbit Flex to evaluate sleep in major depressive disorder: a comparison against polysomnography and wrist-worn actigraphy. J Affect Disord. 2017 Aug 01;217:299–305. doi: 10.1016/j.jad.2017.04.030.S0165-0327(16)31770-0 PubMed DOI PMC

Jo E, Lewis K, Directo D, Kim MJ, Dolezal BA. Validation of biofeedback wearables for photoplethysmographic heart rate tracking. J Sports Sci Med. 2016 Sep;15(3):540–547. PubMed PMC

Floegel TA, Florez-Pregonero A, Hekler EB, Buman MP. Validation of consumer-based hip and wrist activity monitors in older adults with varied ambulatory abilities. J Gerontol A Biol Sci Med Sci. 2016 Jun 02;72(2):229–36. doi: 10.1093/gerona/glw098.glw098 PubMed DOI PMC

Alharbi M, Bauman A, Neubeck L, Gallagher R. Validation of Fitbit-Flex as a measure of free-living physical activity in a community-based phase III cardiac rehabilitation population. Eur J Prev Cardiol. 2016 Feb 23;23(14):1476–85. doi: 10.1177/2047487316634883.2047487316634883 PubMed DOI

Diaz KM, Krupka DJ, Chang MJ, Shaffer JA, Ma Y, Goldsmith J, Schwartz JE, Davidson KW. Validation of the Fitbit One® for physical activity measurement at an upper torso attachment site. BMC Res Notes. 2016 Apr 12;9:213. doi: 10.1186/s13104-016-2020-8. 10.1186/s13104-016-2020-8 PubMed DOI PMC

Sushames A, Edwards A, Thompson F, McDermott R, Gebel K. Validity and reliability of Fitbit Flex for step count, moderate to vigorous physical activity and activity energy expenditure. PLoS One. 2016;11(9):e0161224. doi: 10.1371/journal.pone.0161224. PONE-D-15-42907 PubMed DOI PMC

Kang SG, Kang JM, Ko KP, Park SC, Mariani S, Weng J. Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and good sleepers. J Psychosom Res. 2017 Jun;97:38–44. doi: 10.1016/j.jpsychores.2017.03.009.S0022-3999(16)30561-X PubMed DOI

Voss C, Gardner RF, Dean PH, Harris KC. Validity of commercial activity trackers in children with congenital heart disease. Can J Cardiol. 2017 Jun;33(6):799–805. doi: 10.1016/j.cjca.2016.11.024.S0828-282X(16)31147-3 PubMed DOI

Nelson MB, Kaminsky LA, Dickin DC, Montoye AH. Validity of consumer-based physical activity monitors for specific activity types. Med Sci Sports Exerc. 2016 Aug;48(8):1619–28. doi: 10.1249/MSS.0000000000000933. PubMed DOI

Treacy D, Hassett L, Schurr K, Chagpar S, Paul S, Sherrington C. Validity of different activity monitors to count steps in an inpatient rehabilitation setting. Phys Ther. 2017;97(5):581–8. PubMed

Huang Y, Xu J, Yu B, Shull PB. Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking. Gait Posture. 2016;48:36–41. doi: 10.1016/j.gaitpost.2016.04.025. PubMed DOI

Gillinov S, Etiwy M, Wang R, Blackburn G, Phelan D, Gillinov AM, Houghtaling P, Javadikasgari H, Desai MY. Variable accuracy of wearable heart rate monitors during aerobic exercise. Med Sci Sports Exerc. 2017 Aug;49(8):1697–1703. doi: 10.1249/MSS.0000000000001284.00005768-201708000-00022 PubMed DOI

Woodman JA, Crouter SE, Bassett Jr DR, Fitzhugh EC, Boyer WR. Accuracy of consumer monitors for estimating energy expenditure and activity type. Med Sci Sports Exerc. 2017;49(2):371–7. PubMed

Bronikowski M, Bronikowska M, Glapa A. Do they need goals or support? A report from a goal-setting intervention using physical activity monitors in youth. Int J Environ Res and Public Health. 2016;13(9):1–12. PubMed PMC

Jones AP, Coombes EG, Griffin SJ, van Sluijs EM. Environmental supportiveness for physical activity in English schoolchildren: a study using Global Positioning Systems. Int J Behav Nutr Phys Act. 2009;6:42. PubMed PMC

Mooney R, Quinlan LR, Corley G, Godfrey A, Osborough C, Olaighin G. Evaluation of the Finis Swimsense® and the Garmin SwimTM activity monitors for swimming performance and stroke kinematics analysis. PloS One. 2017;12(2):e0170902. PubMed PMC

An HS, Jones GC, Kang SK, Welk GJ, Lee JM. How valid are wearable physical activity trackers for measuring steps? Eur J Sport Sci. 2017 Apr;17(3):360–368. doi: 10.1080/17461391.2016.1255261. PubMed DOI

Ehrler F, Weber C, Lovis C. Influence of pedometer position on pedometer accuracy at various walking speeds: a comparative study. J Med Internet Res. 2016 Oct 06;18(10):e268. doi: 10.2196/jmir.5916. v18i10e268 PubMed DOI PMC

Ammann R, Taube W, Neuhaus M, Wyss T. The influence of the gait-related arm swing on elevation gain measured by sport watches. J Hum Kinet. 2016;51:53–60. doi: 10.1515/hukin-2015-0170. PubMed DOI PMC

Eyre EL, Duncan MJ, Birch SL, Cox V, Blackett M. Physical activity patterns of ethnic children from low socio-economic environments within the UK. J Sports Sci. 2015;33(3):232–42. PubMed

Schaffer SD, Holzapfel SD, Fulk G, Bosch PR. Step count accuracy and reliability of two activity tracking devices in people after stroke. Physiother Theory Pract. 2017;33(10):788–96. PubMed

O'Connell S, ÓLaighin G, Kelly L, Murphy E, Beirne S, Burke N, Kilgannon O, Quinlan LR. These shoes are made for walking: sensitivity performance evaluation of commercial activity monitors under the expected conditions and circumstances required to achieve the international daily step goal of 10,000 steps. PLoS One. 2016;11(5):e0154956. doi: 10.1371/journal.pone.0154956. PONE-D-15-48144 PubMed DOI PMC

Jennings CA, Berry TR, Carson V, Culos-Reed SN, Duncan MJ, Loitz CC, McCormack GR, McHugh TF, Spence JC, Vallance JK, Mummery WK. UWALK: the development of a multi-strategy, community-wide physical activity program. Transl Behav Med. 2017;7(1):16–27. doi: 10.1007/s13142-016-0417-5. PubMed DOI PMC

Price K, Bird SR, Lythgo N, Raj IS, Wong JY, Lynch C. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. J Med Eng Technol. 2017;41(3):208–15. PubMed

Claes J, Buys R, Avila A, Finlay D, Kennedy A, Guldenring D, Budts W, Cornelissen V. Validity of heart rate measurements by the Garmin Forerunner 225 at different walking intensities. J Med Eng Technol. 2017;41(6):480–5. doi: 10.1080/03091902.2017.1333166. PubMed DOI

O'Brien A, Schlosser RW, Shane HC, Abramson J, Allen AA, Flynn S, Yu C, Dimery K. Brief report: just-in-time visual supports to children with autism via the Apple watch®: a pilot feasibility study. J Autism Dev Disord. 2016 Dec;46(12):3818–3823. doi: 10.1007/s10803-016-2891-5.10.1007/s10803-016-2891-5 PubMed DOI

Cook S, Stauffer JC, Goy JJ, Graf D, Puricel S, Frobert A, Muller O, Togni M, Arroyo D. Heart rate never lies: interventional cardiologist and Braude's quote revised. Open Heart. 2016;3(1):e000373. doi: 10.1136/openhrt-2015-000373. openhrt-2015-000373 PubMed DOI PMC

Mercer K, Giangregorio L, Schneider E, Chilana P, Li M, Grindrod K. Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: a mixed-methods evaluation. JMIR mHealth uHealth. 2016;4(1):e7. doi: 10.2196/mhealth.4225. v4i1e7 PubMed DOI PMC

El-Amrawy F, Nounou MI. Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? Healthc Inform Res. 2015 Oct;21(4):315–20. doi: 10.4258/hir.2015.21.4.315. PubMed DOI PMC

Ferguson T, Rowlands AV, Olds T, Maher C. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. Int J Behav Nutr Phys Act. 2015;12:42. doi: 10.1186/s12966-015-0201-9. 10.1186/s12966-015-0201-9 PubMed DOI PMC

Hernández-Vicente A, Santos-Lozano A, De Cocker K, Garatachea N. Validation study of Polar V800 accelerometer. Ann Transl Med. 2016 Aug;4(15):278. doi: 10.21037/atm.2016.07.16. doi: 10.21037/atm.2016.07.16.atm-04-15-278 PubMed DOI PMC

Giles D, Draper N, Neil W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol. 2016 Mar;116(3):563–71. doi: 10.1007/s00421-015-3303-9. 10.1007/s00421-015-3303-9 PubMed DOI PMC

Gruwez A, Libert W, Ameye L, Bruyneel M. Reliability of commercially available sleep and activity trackers with manual switch-to-sleep mode activation in free-living healthy individuals. Int J Med Inform. 2017 Jun;102:87–92. doi: 10.1016/j.ijmedinf.2017.03.008.S1386-5056(17)30069-2 PubMed DOI

O'Connell S, ÓLaighin G, Quinlan LR. When a step is not a step! Specificity analysis of five physical activity monitors. PLoS One. 2017;12(1):e0169616. doi: 10.1371/journal.pone.0169616. PONE-D-16-29880 PubMed DOI PMC

Parak J, Korhonen I. Evaluation of wearable consumer heart rate monitors based on photopletysmography. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3670–3. doi: 10.1109/EMBC.2014.6944419. PubMed DOI

Spierer DK, Rosen Z, Litman LL, Fujii K. Validation of photoplethysmography as a method to detect heart rate during rest and exercise. J Med Eng Technol. 2015;39(5):264–71. doi: 10.3109/03091902.2015.1047536. PubMed DOI

Parak J, Uuskoski M, Machek J, Korhonen I. Estimating heart rate, energy expenditure, and physical performance with a wrist photoplethysmographic device during running. JMIR mHealth uHealth. 2017 Jul 25;5(7):e97. doi: 10.2196/mhealth.7437. v5i7e97 PubMed DOI PMC

Delgado-Gonzalo R, Parak J, Tarniceriu A, Renevey P, Bertschi M, Korhonen I. Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device. Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015:430–3. doi: 10.1109/EMBC.2015.7318391. PubMed DOI

Parak J, Tarniceriu A, Renevey P, Bertschi M, Delgado-Gonzalo R, Korhonen I. Evaluation of the beat-to-beat detection accuracy of PulseOn wearable optical heart rate monitor. Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015:8099–102. doi: 10.1109/EMBC.2015.7320273. PubMed DOI

Apple. 2017. [2017-09-19]. WatchOS - Apple Developer https://developer.apple.com/watchos .

Apple. 2017. [2017-09-13]. HealthKit - Apple Developer https://developer.apple.com/healthkit/

Fitbit. 2017. [2017-09-22]. Fitbit Developer https://dev.fitbit.com/

Garmin. [2017-09-13]. Garmin Developers https://developer.garmin.com/

Misfit. [2017-09-13]. Misfit Developer Toolkit https://build.misfit.com/

Polar. [2017-09-19]. Polar AccessLink https://www.polar.com/en/connect_with_polar/polar_accesslink .

Samsung. [2017-09-13]. Samsung Health - Samsung Developers http://developer.samsung.com/health .

TomTom. [2017-09-13]. TomTom Developer Portal https://developer.tomtom.com/

Nokia. [2017-09-13]. Nokia Health API Developer Documentation https://developer.health.nokia.com/api .

PR Newswire Association. [2018-03-01]. Fossil Group Reimagines the Watch https://www.prnewswire.com/news-releases/fossil-group-reimagines-the-watch-300427943.html .

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Validity of six consumer-level activity monitors for measuring steps in patients with chronic heart failure

. 2019 ; 14 (9) : e0222569. [epub] 20190913

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...