Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
29596375
PubMed Central
PMC5948703
DOI
10.3390/s18041027
PII: s18041027
Knihovny.cz E-zdroje
- Klíčová slova
- image colour properties, image processing, image texture properties, machine vision system, supervised classification,
- MeSH
- dieta MeSH
- logistické modely MeSH
- Oncorhynchus mykiss MeSH
- support vector machine * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k-Nearest neighbours (k-NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.
Zobrazit více v PubMed
Weeranantanaphan J., Downey G., Allen P., Sun D. Review of near Infrared Spectroscopy in Muscle Food Analysis: 2005–2010. J. Near Infrared Spectrosc. 2011;19:61–104. doi: 10.1255/jnirs.924. DOI
Brinker A., Reiter R. Fish meal replacement by plant protein substitution and guar gum addition in trout feed, Part I: Effects on feed utilization and fish quality. Aquaculture. 2011;310:350–360. doi: 10.1016/j.aquaculture.2010.09.041. PubMed DOI
Gormley T. Note on consumer preference of smoked salmon colour. Ir. J. Agric. Food Res. 1992;31:199–202. doi: 10.2307/25562193A. DOI
Colihueque N., Parraguez M., Estay F., Diaz N. Skin Color Characterization in Rainbow Trout by Use of Computer-Based Image Analysis. N. Am. J. Aquac. 2011;73:249–258. doi: 10.1080/15222055.2011.581578. DOI
Yi X., Xu W., Zhou H., Zhang Y., Luo Y., Zhang W., Mai K. Effects of dietary astaxanthin and xanthophylls on the growth and skin pigmentation of large yellow croaker Larimichthys croceus. Aquaculture. 2014;433:377–383. doi: 10.1016/j.aquaculture.2014.06.038. DOI
Segade Á., Robaina L., Ferrer O., Romero G., Domínguez M. Effects of the diet on seahorse (Hippocampus hippocampus) growth, body colour and biochemical composition. Aquac. Nutr. 2014;21:807–813. doi: 10.1111/anu.12202. DOI
Costa D., Mattioli C., Silva W., Takata R., Leme F., Oliveira A., Luz R. The effect of environmental colour on the growth, metabolism, physiology and skin pigmentation of the carnivorous freshwater catfsh Lophiosilurus alexandri. J. Fish Biol. 2016;90:1–14. doi: 10.1111/jfb.13208. PubMed DOI
Erikson U., Misimi E. Atlantic salmon skin and fillet color changes effected by perimortem handling stress, rigor mortis, and ice storage. J. Food Sci. 2008;73:C50–C59. doi: 10.1111/j.1750-3841.2007.00617.x. PubMed DOI
Balaban M., Chombeau M., Cırban D., Gümüş B. Prediction of the weight of Alaskan pollock using image analysis. J. Food Sci. 2010;75:E552–E556. doi: 10.1111/j.1750-3841.2010.01813.x. PubMed DOI
Clydesdale F., Ahmed E. Colorimetry—Methodology and applications∗. C R C Crit. Rev. Food Sci. Nutr. 1978;10:243–301. doi: 10.1080/10408397809527252. PubMed DOI
Skonberg D., Hardy R., Barrows F., Dong F. Color and flavor analyses of fillets from farm-raised rainbow trout (Oncorhynchus mykiss) fed low-phosphorus feeds containing corn or wheat gluten. Aquaculture. 1998;166:269–277. doi: 10.1016/S0044-8486(98)00294-4. DOI
Macagnano A., Careche M., Herrero A., Paolesse R., Martinelli E., Pennazza G., Carmona P., D’Amico A., Natale D. A model to predict fish quality from instrumental features. Sens. Actuators B Chem. 2005;111–112:293–298. doi: 10.1016/j.snb.2005.06.028. DOI
Kalinowski C., Izquierdo M., Schuchardt D., Robaina L. Dietary supplementation time with shrimp shell meal on red porgy (Pagrus pagrus) skin colour and carotenoid concentration. Aquaculture. 2007;272:451–457. doi: 10.1016/j.aquaculture.2007.06.008. DOI
Mendoza F., Aguilera J. Application of image analysis for classification of ripening bananas. J. Food Sci. 2004;69:E471–E477. doi: 10.1111/j.1365-2621.2004.tb09932.x. DOI
Yam K., Papadakis S. A simple digital imaging method for measuring and analyzing color of food surfaces. J. Food Eng. 2004;61:137–142. doi: 10.1016/S0260-8774(03)00195-X. DOI
Saberioon M., Gholizadeh A., Cisar P., Pautsina A., Urban J. Application of machine vision systems in aquaculture with emphasis on fish: State-of-the-art and key issues. Rev. Aquac. 2017;9:369–387. doi: 10.1111/raq.12143. DOI
Zaťková I., Sergejevová M., Urban J., Vachta R., Štys D., Masojídek J. Carotenoid-enriched microalgal biomass as feed supplement for freshwater ornamentals: Albinic form of wels catfish (Silurus glanis) Aquac. Nutr. 2009;17:278–286. doi: 10.1111/j.1365-2095.2009.00751.x. DOI
Colihueque N. Analysis of the coloration and spottiness of Blue Back rainbow trout at a juvenile stage. J. Appl. Anim. Res. 2014;42:474–480. doi: 10.1080/09712119.2014.883317. DOI
Balaban M., Stewart K., Fletcher G., Alçiçek Z. Color Change of the Snapper (Pagrus auratus) and Gurnard (Chelidonichthys kumu) Skin and Eyes during Storage: Effect of Light Polarization and Contact with Ice. J. Food Sci. 2014;79:E2456–E2462. doi: 10.1111/1750-3841.12693. PubMed DOI
Wishkerman A., Boglino A., Darias M., Andree K., Estévez A., Gisbert E. Image analysis-based classification of pigmentation patterns in fish: A case study of pseudo-albinism in Senegalese sole. Aquaculture. 2016;464:303–308. doi: 10.1016/j.aquaculture.2016.06.040. DOI
Wallat G., Lazur A., Chapman F. Carotenoids of Different Types and Concentrations in Commercial Formulated Fish Diets Affect Color and Its Development in the Skin of the Red Oranda Variety of Goldfish. N. Am. J. Aquac. 2017;67:42–51. doi: 10.1577/FA03-062.1. DOI
Luzuriaga D., Balaban M., Yeralan S. Analysis of visual quality attributes of white shrimp by machine vision. J. Food Sci. 1997;62:113–130. doi: 10.1111/j.1365-2621.1997.tb04379.x. DOI
Du C., Sun D. Learning techniques used in computer vision for food quality evaluation: A review. J. Food Eng. 2006;72:39–55. doi: 10.1016/j.jfoodeng.2004.11.017. DOI
Hu J., Li D., Duan Q., Han Y., Chen G., Si X. Fish species classification by color, texture and multi-class support vector machine using computer vision. Comput. Electron. Agric. 2012;88:133–140. doi: 10.1016/j.compag.2012.07.008. DOI
Hernández-Serna A., Jiménez-Segura L. Automatic identification of species with neural networks. PeerJ. 2014;2:e563. doi: 10.7717/peerj.563. PubMed DOI PMC
Rossi F., Benso A., Carlo S., Politano G., Savino A., Acutis P. FishAPP: A mobile App to detect fish falsification through image processing and machine learning techniques; Proceedings of the IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR); Cluj-Napoca, Romania. 19–21 May 2016; pp. 1–6.
Liu Z., Cheng F., Hong H. Identification of Impurities in Fresh Shrimp Using Improved Majority Scheme-Based Classifier. Food Anal. Methods. 2016;9:3133–3142. doi: 10.1007/s12161-016-0497-3. DOI
Dutta M., Issac A., Minhas N., Sarkar B. Image processing based method to assess fish quality and freshness. J. Food Eng. 2016;177:50–58. doi: 10.1016/j.jfoodeng.2015.12.018. DOI
National Research Council . Nutrient Requirements of Fish and Shrimp. The National Academies Press; Washington, DC, USA: 2011.
Yang J., Yang J., Zhang D., Lu J. Feature fusion: Parallel strategy vs. serial strategy. Pattern Recognit. 2003;36:1369–1381. doi: 10.1016/S0031-3203(02)00262-5. DOI
Pavlidis M., Papandroulakis N., Divanach P. A method for the comparison of chromaticity parameters in fish skin: Preliminary results for coloration pattern of red skin Sparidae. Aquaculture. 2006;258:211–219. doi: 10.1016/j.aquaculture.2006.05.028. DOI
Erikson U., Shabani F., Beli E., Muji S., Rexhepi A. The impacts of perimortem stress and gutting on quality index and colour of rainbow trout (Oncorhynchus mykiss) during ice storage: A commercial case study. Eur. Food Res. Technol. 2018;244:197–206. doi: 10.1007/s00217-017-2944-9. DOI
Tang L., Tian L., Steward B. Classification of broadleaf and grass weeds using gabor wavelets and an artificial neural network. Trans. ASAE. 2003;46:1247–1254. doi: 10.13031/2013.13944. DOI
Trussell H., Saber E., Vrhel M. Color image processing: Basics and special issue overview. IEEE Signal Process. Mag. 2005;22:14–22. doi: 10.1109/MSP.2005.1407711. DOI
Westland S., Ripamonti C. Computational Colour Science Using MATLAB. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2004.
Cheng H., Jiang X., Sun Y., Wang J. Color image segmentation: Advances and prospects. Pattern Recognit. 2001;34:2259–2281. doi: 10.1016/S0031-3203(00)00149-7. DOI
Xu Y., Wang X., Sun H., Wang H., Zhan Y. Study of monitoring maize leaf nutrition based on image processing and spectral analysis; Proceedings of the World Automation Congress; Kobe, Japan. 19–23 September 2010; Piscataway, NJ, USA: IEEE; 2010.
Tucker C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979;8:127–150. doi: 10.1016/0034-4257(79)90013-0. DOI
Kawashima S., Nakatani M. An Algorithm for Estimating Chlorophyll Content in Leaves Using a Video Camera. Ann. Bot. 1998;81:49–54. doi: 10.1006/anbo.1997.0544. DOI
Karcher D., Richardson M. Quantifying Turfgrass Color Using Digital Image Analysis. Crop Sci. 2003;43:943–951. doi: 10.2135/cropsci2003.9430. DOI
Haidekker M. Advanced Biomedical Image Analysis. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2010. Image Registration; pp. 350–385.
Hall-Beyer M. GLCM Texture: A Tutorial v. 1.0 through 2.7. [(accessed on 4 April 2017)]; Available online: http://hdl.handle.net/1880/51900.
Hsu C., Chang C., Lin C. A Practical Guide to Support Vector Classification. Department of Computer Science, National Taiwan University; Taipei, Taiwan: 2003.
Vapnik V. Statistical Learning Theory. John Wiley & Sons; Hoboken, NJ, USA: 1998.
Kuhn M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008;28 doi: 10.18637/jss.v028.i05. DOI
Breiman L. Bagging predictors. Mach. Learn. 1996;24:123–140. doi: 10.1007/BF00058655. DOI
Ho T. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998;20:832–844. doi: 10.1109/34.709601. DOI
Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Díaz-Uriarte R., Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinform. 2006;7:3. doi: 10.1186/1471-2105-7-3. PubMed DOI PMC
Liaw A., Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
Akaike H. New look at the statistical model identification. IEEE Trans. Autom. Control. 1974;19:716–723. doi: 10.1109/TAC.1974.1100705. DOI
James G., Witten D., Hastie T., Tibshirani R. An Introduction to Statistical Learning: With Applications in R. Springer; Berlin/Heidelberg, Germany: 2013. DOI
Marschner I. glm2: Fitting generalized linear models with convergence problems. R J. 2011;3:12–15.
Venables W., Ripley B. Modern Applied Statistics with S-PLUS. 4th ed. Springer; Berlin/Heidelberg, Germany: 2002. p. 495.
Amigo J., Babamoradi H., Elcoroaristizabal S. Hyperspectral image analysis. A tutorial. Anal. Chim. Acta. 2015;896:34–51. doi: 10.1016/j.aca.2015.09.030. PubMed DOI
Bradley A. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997;30:1145–1159. doi: 10.1016/S0031-3203(96)00142-2. DOI
Robin X., Turck N., Hainard A., Tiberti N., Lisacek F., Sanchez J., Müller M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:1–8. doi: 10.1186/1471-2105-12-77. PubMed DOI PMC
Ariana D., Guyer D., Shrestha B. Integrating multispectral reflectance and fluorescence imaging for defect detection on apples. Comput. Electron. Agric. 2006;50:148–161. doi: 10.1016/j.compag.2005.10.002. DOI
Araújo S., Wetterlind J., Demattê J., Stenberg B. Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques. Eur. J. Soil Sci. 2014;65:718–729. doi: 10.1111/ejss.12165. DOI
Boser B., Guyon I., Vapnik V. A training algorithm for optimal margin classifiers; Proceedings of the Fifth Annual Workshop on Computational Learning Theory; Pittsburgh, PA, USA. 27–29 July 1992; New York, NY, USA: ACM; 1992. pp. 144–152.
Mountrakis G., Im J., Ogole C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011;66:247–259. doi: 10.1016/j.isprsjprs.2010.11.001. DOI
Chatzifotis S., Pavlidis M., Jimeno C., Vardanis G., Sterioti A., Divanach P. The effect of different carotenoid sources on skin coloration of cultured red porgy (Pagrus pagrus) Aquac. Res. 2005;36:1517–1525. doi: 10.1111/j.1365-2109.2005.01374.x. DOI
Ho A., O’Shea S., Pomeroy H. Dietary esterified astaxanthin effects on color, carotenoid concentrations, and compositions of clown anemonefish, Amphiprion ocellaris, skin. Aquac. Int. 2013;21:361–374. doi: 10.1007/s10499-012-9558-9. DOI
Rosenlund G., Obach A., Sandberg M., Standal H., Tveit K. Effect of alternative lipid sources on long-term growth performance and quality of Atlantic salmon (Salmo salar L.) Aquac. Res. 2001;32:323–328. doi: 10.1046/j.1355-557x.2001.00025.x. DOI
Choubert G., Mendes-Pinto M., Morais R. Pigmenting efficacy of astaxanthin fed to rainbow trout Oncorhynchus mykiss: Effect of dietary astaxanthin and lipid sources. Aquaculture. 2006;257:429–436. doi: 10.1016/j.aquaculture.2006.02.055. DOI
Nguyen T. The cholesterol-lowering action of plant stanol esters. Recent Adv. Nutr. Sci. 1999;129:2109–2112. doi: 10.1093/jn/129.12.2109. PubMed DOI
Regost C., Jakobsen J., Rørå A. Flesh quality of raw and smoked fillets of Atlantic salmon as influenced by dietary oil sources and frozen storage. Food Res. Int. 2004;37:259–271. doi: 10.1016/j.foodres.2003.12.003. DOI
Turchini G., Quinn G., Jones P., Palmeri G., Gooley G. Traceability and Discrimination among Differently Farmed Fish: A Case Study on Australian Murray Cod. J. Agric. Food Chem. 2009;57:274–281. doi: 10.1021/jf801962h. PubMed DOI
Shearer K., Kestin S., Warriss P. Farmed Fish Quality. Blackwell Science; Hoboken, NJ, USA: 2001. The effect of diet composition and feeding regime on the proximate composition of farmed fishes; pp. 31–41.
Dabbene F., Gay P., Tortia C. Traceability issues in food supply chain management: A review. Biosyst. Eng. 2014;120:65–80. doi: 10.1016/j.biosystemseng.2013.09.006. DOI
Føre M., Frank K., Norton T., Svendsen E., Alfredsen J., Dempster T., Eguiraun H., Watson W., Stahl A., Sunde L., et al. Precision fish farming: A new framework to improve production in aquaculture. Biosyst. Eng. 2017 doi: 10.1016/j.biosystemseng.2017.10.014. DOI
Dev S., Savoy F., Lee Y., Winkler S. Rough-set-based color channel selection. IEEE Geosci. Remote Sens. Lett. 2017;14:52–56. doi: 10.1109/LGRS.2016.2625303. DOI