Infectious bursal disease virus inoculation infection modifies Campylobacter jejuni-host interaction in broilers

. 2018 ; 10 () : 13. [epub] 20180330

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29610580

BACKGROUND: Campylobacter jejuni is considered as a chicken commensal. The gut microbiota and the immune status of the host may affect its colonization. Infectious bursal disease virus (IBDV) is an immunosuppressive virus of chickens, which allows secondary pathogens to invade or exacerbates their pathogenesis. To investigate the effect of IBDV-induced immunosuppression on the pathogenesis of C. jejuni, broiler chickens were inoculated with a very virulent (vv) strain of IBDV at 14 days post hatch followed by C. jejuni inoculation at 7 (Experiment A) or 9 (Experiment B) days post virus (IBDV) inoculation. RESULTS: vvIBDV-infection led to a depression in caecal lamina propria B lymphocytes and the anti-C. jejuni-antibody response starting at 14 days post C. jejuni inoculation (pbi). The C. jejuni-colonization pattern was comparable between mono-inoculated groups of both experiments, but it varied for vvIBDV + C. jejuni co-inoculated groups. In Experiment A significant higher numbers of colony forming units (CFU) of C. jejuni were detected in the caecum of co-inoculated birds compared to C. jejuni-mono-inoculated birds in the early phase after C. jejuni-inoculation. In Experiment B the clearance phase was affected in the co-inoculated group with significantly higher CFU at 21 days pbi compared to the mono-inoculated group (P < 0.05). No major differences were seen in numbers local lamina propria T lymphocyte populations between C. jejuni-inoculated groups with or without vvIBDV-infection. Interestingly, both pathogens affected the microbiota composition. The consequences of these microflora changes for the host have to be elucidated further. CONCLUSION: Our data suggests that the timing between viral and bacterial infection might affect the outcome of C. jejuni colonization differently. Our results confirm previous studies that anti-Campylobacter-antibodies may specifically be important for the clearance phase of the bacteria. Therefore, as vvIBDV is widely distributed in the field, it may have a significant impact on the colonization and shedding rate of C. jejuni in commercial poultry flocks. Subsequently, successful IBDV-control strategies may indirectly also benefit the gut-health of chickens.

Zobrazit více v PubMed

Gormley FJ, MacRae M, Forbes KJ, Ogden ID, Dallas JF, Strachan NJ. Has retail chicken played a role in the decline of human campylobacteriosis? Appl Environ Microbiol. 2008;74(2):383–390. doi: 10.1128/AEM.01455-07. PubMed DOI PMC

Humphrey S, Chaloner G, Kemmett K, Davidson N, Williams N, Kipar A, Humphrey T, Wigley P. Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. MBio. 2014;5(4):e01364-01314. doi: 10.1128/mBio.01364-14. PubMed DOI PMC

Han Z, Pielsticker C, Gerzova L, Rychlik I, Rautenschlein S. The influence of age on Campylobacter jejuni infection in chicken. Dev Comp Immunol. 2016;62:58–71. doi: 10.1016/j.dci.2016.04.020. PubMed DOI

Ghareeb K, Awad W, Mohnl M, Schatzmayr G, Boehm J. Control strategies for Campylobacter infection in poultry production. Worlds Poult Sci J. 2013;69(01):57–76. doi: 10.1017/S0043933913000068. DOI

Sharma JM, Kim I-J, Rautenschlein S, Yeh H-Y. Infectious bursal disease virus of chickens: pathogenesis and immunosuppression. Dev Comp Immunol. 2000;24(2):223–235. doi: 10.1016/S0145-305X(99)00074-9. PubMed DOI

Rautenschlein S, von Samson-Himmelstjerna G, Haase C. A comparison of immune responses to infection with virulent infectious bursal disease virus (IBDV) between specific-pathogen-free chickens infected at 12 and 28 days of age. Vet Immunol Immunopathol. 2007;115(3):251–260. doi: 10.1016/j.vetimm.2006.11.002. PubMed DOI

Ingrao F, Rauw F, Lambrecht B, van den Berg T. Infectious Bursal disease: a complex host–pathogen interaction. Dev Comp Immunol. 2013;41(3):429–438. doi: 10.1016/j.dci.2013.03.017. PubMed DOI

Kim I-J, Gagic M, Sharma JM. Recovery of antibody-producing ability and lymphocyte repopulation of bursal follicles in chickens exposed to infectious bursal disease virus. Avian Dis. 1999;43:401–413. doi: 10.2307/1592637. PubMed DOI

Wyeth P. Effect of infectious bursal disease on the response of chickens to S. typhimurium and E. coli infections. Vet Rec. 1975;96(11):238–243. doi: 10.1136/vr.96.11.238. PubMed DOI

Bautista D, Elankumaran S, Heckert R. Effect of a variant infectious bursal disease virus (E/Del) on Salmonella typhimurium infection in commercial broiler chickens. Avian Dis. 2004;48(2):361–369. doi: 10.1637/7130. PubMed DOI

Subler KA, Mickael CS, Jackwood DJ. Infectious bursal disease virus-induced immunosuppression exacerbates Campylobacter jejuni colonization and shedding in chickens. Avian Dis. 2006;50(2):179–184. doi: 10.1637/7434-090705R.1. PubMed DOI

Stojanov I, Milić N, Ašanin R, Vidić B, Nišavić J, Grgić Ž, Prica N. Effects of some immunosuppressive factors on campylobacteriosis outbreaks in poultry. Acta Vet. 2008;58(2–3):167–177.

Wang D, Zhou X, She R, Xiong J, Sun Q, Peng K, Liu L, Liu Y. Impaired intestinal mucosal immunity in specific-pathogen-free chickens after infection with very virulent infectious bursal disease virus. Poult Sci. 2009;88(8):1623–1628. doi: 10.3382/ps.2009-00124. PubMed DOI

Sahin O, Luo N, Huang S, Zhang Q. Effect of Campylobacter-specific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl Environ Microbiol. 2003;69(9):5372–5379. doi: 10.1128/AEM.69.9.5372-5379.2003. PubMed DOI PMC

Cawthraw S, Newell D. Investigation of the presence and protective effects of maternal antibodies against Campylobacter jejuni in chickens. Avian Dis. 2010;54(1):86–93. doi: 10.1637/9004-072709-Reg.1. PubMed DOI

Lacharme-Lora L, Chaloner G, Gilroy R, Humphrey S, Gibbs K, Jopson S, Wright E, Reid W, Ketley J, Humphrey T. B lymphocytes play a limited role in clearance of Campylobacter jejuni from the chicken intestinal tract. Sci Rep. 2017;7:45090. doi: 10.1038/srep45090. PubMed DOI PMC

Eterradossi N, Toquin D, Rivallan G, Guittet M. Modified activity of a VP2-located neutralizing epitope on various vaccine, pathogenic and hypervirulent strains of infectious bursal disease virus. Arch Virol. 1997;142(2):255–270. doi: 10.1007/s007050050075. PubMed DOI

Pielsticker C, Glünder G, Rautenschlein S. Colonization pattern of C. jejuni isolates of human and avian origin and differences in the induction of immune responses in chicken. Vet Immunol Immunopathol. 2016;169:1–9. doi: 10.1016/j.vetimm.2015.11.005. PubMed DOI

Kaiser M, Cheeseman J, Kaiser P, Lamont S. Cytokine expression in chicken peripheral blood mononuclear cells after in vitro exposure to Salmonella enterica serovar Enteritidis. Poult Sci. 2006;85(11):1907–1911. doi: 10.1093/ps/85.11.1907. PubMed DOI

Tippenhauer M, Heller DE, Weigend S, Rautenschlein S. The host genotype influences infectious bursal disease virus pathogenesis in chickens by modulation of T cells responses and cytokine gene expression. Dev Comp Immunol. 2013;40(1):1–10. doi: 10.1016/j.dci.2012.10.013. PubMed DOI

Smith CK, AbuOun M, Cawthraw SA, Humphrey TJ, Rothwell L, Kaiser P, Barrow PA, Jones MA. Campylobacter colonization of the chicken induces a proinflammatory response in mucosal tissues. FEMS Immunol Med Microbiol. 2008;54(1):114–121. doi: 10.1111/j.1574-695X.2008.00458.x. PubMed DOI

Haas B, Hinz KH, Glunder G. Biotin-streptavidin enzyme-linked immunosorbent assay for the detection of antibodies to Campylobacter jejuni and C. coli in chickens. Zentralbl Veterinarmed B. J Vet Med B. 1999;46(3):163–171. doi: 10.1046/j.1439-0450.1999.00217.x. PubMed DOI

Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Characterisation of the most important metabolic pathways and biological processes expressed in chicken caecal microbiota. Appl Environ Microbiol. 2015 PubMed PMC

Jackwood DJ. Viral competition and maternal immunity influence the clinical disease caused by very virulent infectious bursal disease virus. Avian Dis. 2011;55(3):398–406. doi: 10.1637/9671-012811-Reg.1. PubMed DOI

Rautenschlein S, Kraemer C, Vanmarcke J, Montiel E. Protective efficacy of intermediate and intermediate plus infectious bursal disease virus (IBDV) vaccines against very virulent IBDV in commercial broilers. Avian Dis. 2005;49(2):231–237. doi: 10.1637/7310-112204R. PubMed DOI

Tanimura N, Sharma J. Appearance of T cells in the bursa of Fabricius and cecal tonsils during the acute phase of infectious bursal disease virus infection in chickens. Avian Dis. 1997;41:638–645. doi: 10.2307/1592155. PubMed DOI

Rubbenstroth D, Ryll M, Behr K-P, Rautenschlein S. Pathogenesis of Riemerella anatipestifer in turkeys after experimental mono-infection via respiratory routes or dual infection together with the avian metapneumovirus. Avian Pathol. 2009;38(6):497–507. doi: 10.1080/03079450903349220. PubMed DOI

Sid H, Hartmann S, Petersen H, Ryll M, Rautenschlein S. Mycoplasma gallisepticum modifies the pathogenesis of influenza A virus in the avian tracheal epithelium. Int J Med Microbiol. 2016;306(3):174–186. doi: 10.1016/j.ijmm.2016.04.001. PubMed DOI

Withers DR, Davison TF, Young JR. Diversified bursal medullary B cells survive and expand independently after depletion following neonatal infectious bursal disease virus infection. Immunology. 2006;117(4):558–565. doi: 10.1111/j.1365-2567.2006.02332.x. PubMed DOI PMC

Withers DR, Young JR, Davison TF. Infectious bursal disease virus-induced immunosuppression in the chick is associated with the presence of undifferentiated follicles in the recovering bursa. Viral Immunol. 2005;18(1):127–137. doi: 10.1089/vim.2005.18.127. PubMed DOI

Perumbakkam S, Hunt HD, Cheng HH. Marek’s disease virus influences the core gut microbiome of the chicken during the early and late phases of viral replication. FEMS Microbiol Ecol. 2014;90(1):300–312. doi: 10.1111/1574-6941.12392. PubMed DOI

Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, Hernandez RD, Lederman MM, Huang Y, Somsouk M. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5(193):193ra191. doi: 10.1126/scitranslmed.3006438. PubMed DOI PMC

Skånseng B, Kaldhusdal M, Rudi K. Comparison of chicken gut colonisation by the pathogens Campylobacter jejuni and Clostridium perfringens by real-time quantitative PCR. Mol Cell Probes. 2006;20(5):269–279. doi: 10.1016/j.mcp.2006.02.001. PubMed DOI

Kaakoush NO, Sodhi N, Chenu JW, Cox JM, Riordan SM, Mitchell HM. The interplay between Campylobacter and Helicobacter species and other gastrointestinal microbiota of commercial broiler chickens. Gut Pathog. 2014;6(1):18. doi: 10.1186/1757-4749-6-18. PubMed DOI PMC

Duncan SH, Hold GL, Harmsen HJ, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002;52(6):2141–2146. PubMed

Van Deun K, Pasmans F, Van Immerseel F, Ducatelle R, Haesebrouck F. Butyrate protects Caco-2 cells from Campylobacter jejuni invasion and translocation. Br J Nutr. 2008;100(03):480–484. doi: 10.1017/S0007114508921693. PubMed DOI

Newell D, Fearnley C. Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol. 2003;69(8):4343–4351. doi: 10.1128/AEM.69.8.4343-4351.2003. PubMed DOI PMC

Edwards LA, Nistala K, Mills DC, Stephenson HN, Zilbauer M, Wren BW, Dorrell N, Lindley KJ, Wedderburn LR, Bajaj-Elliott M. Delineation of the innate and adaptive T-cell immune outcome in the human host in response to Campylobacter jejuni infection. PLoS ONE. 2010;5(11):e15398. doi: 10.1371/journal.pone.0015398. PubMed DOI PMC

Erdman SE, Poutahidis T. Roles for inflammation and regulatory T cells in colon cancer. Toxicol Pathol. 2010;38(1):76–87. doi: 10.1177/0192623309354110. PubMed DOI PMC

Smith PM, Garrett WS. The gut microbiota and mucosal T cells. Front Microbiol. 2011;2:111. doi: 10.3389/fmicb.2011.00111. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...