Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting

. 2018 Mar 31 ; 11 (4) : . [epub] 20180331

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29614712

Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture-selective laser melting (SLM) and electron beam melting (EBM)-in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.

Zobrazit více v PubMed

Banerjee D., Williams J.C. Perspectives on titanium science and technology. Acta Mater. 2013;61:844–879. doi: 10.1016/j.actamat.2012.10.043. DOI

Edwards P., Ramulu M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater. Sci. Eng. A. 2014;598:327–337. doi: 10.1016/j.msea.2014.01.041. DOI

Murr L.E. Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. J. Mater. Sci. Technol. 2016;32:987–995. doi: 10.1016/j.jmst.2016.08.011. DOI

Levy G.N. The role and future of the laser technology in the additive manufacturing environment. Phys. Procedia. 2010;5:65–80. doi: 10.1016/j.phpro.2010.08.123. DOI

Wong K.V., Hernandez A. A review of additive manufacturing. ISRN Mech. Eng. 2012;2012:208760. doi: 10.5402/2012/208760. DOI

Calleja A., Tabernero I., Fernández A., Celaya A., Lamikiz A., López de Lacalle L.N. Improvement of strategies and parameters for multi-axis laser cladding operations. Opt. Lasers Eng. 2014;56:113–120. doi: 10.1016/j.optlaseng.2013.12.017. DOI

Frazier W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014;23:1917–1928. doi: 10.1007/s11665-014-0958-z. DOI

Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019. DOI

Edwards P., O’Conner A., Ramulu M. Electron beam additive manufacturing of titanium components: Properties and performance. J. Manuf. Sci. Eng. 2013;135:061016. doi: 10.1115/1.4025773. DOI

Murr L.E., Gaytan S.M., Ramirez D.A., Martinez E., Hernandez J., Amato K.N., Shindo P.W., Medina F.R., Wicker R.B. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 2012;28:1–14. doi: 10.1016/S1005-0302(12)60016-4. DOI

Murr L.E., Martinez E., Amato K.N., Gaytan S.M., Hernandez J., Ramirez D.A., Shindo P.W., Medina F., Wicker R.B. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science. J. Mater. Res. Technol. 2012;1:42–54. doi: 10.1016/S2238-7854(12)70009-1. DOI

Günther J., Krewerth D., Lippmann T., Leuders S., Tröster T., Weidner A., Biermann H., Niendorf T. Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. Int. J. Fatigue. 2017;94:236–245. doi: 10.1016/j.ijfatigue.2016.05.018. DOI

Hiemenz J. Electron beam melting. Adv. Mater. Process. 2007;165:45–46.

Rafi H., Karthik N., Gong H., Starr T.L., Stucker B.E. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J. Mater. Eng. Perform. 2013;22:3872–3883. doi: 10.1007/s11665-013-0658-0. DOI

Chan K.S., Koike M., Mason R.L., Okabe T. Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants. Metall. Mater. Trans. A. 2013;44:1010–1022. doi: 10.1007/s11661-012-1470-4. DOI

Zhao X., Li S., Zhang M., Liu Y., Sercombe T.B., Wang S., Hao Y., Yang R., Murr L.E. Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 2016;95:21–31. doi: 10.1016/j.matdes.2015.12.135. DOI

Gong H., Rafi K., Gu H., Janaki Ram G.D., Starr T., Stucker B. Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 2015;86:545–554. doi: 10.1016/j.matdes.2015.07.147. DOI

Greitemeier D., Palm F., Syassen F., Melz T. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int. J. Fatigue. 2017;94:211–217. doi: 10.1016/j.ijfatigue.2016.05.001. DOI

He W., Jia W., Liu H., Tang H., Kang X., Huang Y. Research on preheating of titanium alloy powder in electron beam melting technology. Rare Met. Mater. Eng. 2011;40:2072–2075. doi: 10.1016/S1875-5372(12)60014-9. DOI

Yan C., Hao L., Hussein A., Young P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 2015;51:61–73. doi: 10.1016/j.jmbbm.2015.06.024. PubMed DOI

Gong H., Rafi K., Gu H., Starr T., Stucker B. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. 2014;1–4:87–98. doi: 10.1016/j.addma.2014.08.002. DOI

Simonelli M. Ph.D. Thesis. School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University; Loughborough, UK: 2014. Microstructure Evolution and Mechanical Properties of Selective Laser Melted Ti–6Al–4V.

Fousová M., Vojtěch D., Kubásek J., Jablonská E., Fojt J. Promising characteristics of gradient porosity Ti–6Al–4V alloy prepared by SLM process. J. Mech. Behav. Biomed. Mater. 2017;69:368–376. doi: 10.1016/j.jmbbm.2017.01.043. PubMed DOI

Vilaro T., Colin C., Bartout J.D. As-Fabricated and heat-treated microstructures of the Ti–6Al–4V alloy processed by Selective Laser Melting. Metall. Mater. Trans. A. 2011;42:3190–3199. doi: 10.1007/s11661-011-0731-y. DOI

Xu W., Brandt M., Sun S., Elambasseril J., Liu Q., Latham K., Xia K., Qian M. Additive manufacturing of strong and ductile Ti–6Al–4V by Selective Laser Melting via in situ martensite decomposition. Acta Mater. 2015;85:74–84. doi: 10.1016/j.actamat.2014.11.028. DOI

Ahmed T., Rack H.J. Phase transformations during cooling in α + β titanium alloys. Mater. Sci. Eng. A. 1998;243:206–211. doi: 10.1016/S0921-5093(97)00802-2. DOI

Sallica-Leva E., Caram R., Jardini A.L., Fogagnolo J.B. Ductility improvement due to martensite α′ decomposition in porous Ti–6Al–4V parts produced by selective laser melting for orthopedic implants. J. Mech. Behav. Biomed. Mater. 2016;54:149–158. doi: 10.1016/j.jmbbm.2015.09.020. PubMed DOI

Clemens H., Bartels A., Bystrzanowski S., Chladil H., Leitner H., Dehm G., Gerling R., Schimansky F.P. Grain refinement in γ-TiAl-based alloys by solid state phase transformations. Intermetallics. 2006;14:1380–1385. doi: 10.1016/j.intermet.2005.11.015. DOI

Vrancken B., Thijs L., Kruth J.-P., Van Humbeeck J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J. Alloys Compd. 2012;541:177–185. doi: 10.1016/j.jallcom.2012.07.022. DOI

Fousová M., Vojtěch D., Kubásek J. Titanium alloy Ti–6Al–4V prepared by Selective Laser Melting (SLM) Manuf. Technol. 2016;16:691–697.

Hrabe N., Gnäupel-Herold T., Quinn T. Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. Int. J. Fatigue. 2017;94:202–210. doi: 10.1016/j.ijfatigue.2016.04.022. DOI

Zhai Y., Galarraga H., Lados D.A. Microstructure, static properties, and fatigue crack growth mechanisms in Ti–6Al–4V fabricated by additive manufacturing: LENS and EBM. Eng. Fail. Anal. 2016;69:3–14. doi: 10.1016/j.engfailanal.2016.05.036. DOI

Galarraga H., Warren R.J., Lados D.A., Dehoff R.R., Kirka M.M. Fatigue crack growth mechanisms at the microstructure scale in as-fabricated and heat treated Ti–6Al–4V ELI manufactured by electron beam melting (EBM) Eng. Fract. Mech. 2017;176:263–280. doi: 10.1016/j.engfracmech.2017.03.024. DOI

Murr L.E., Esquivel E.V., Quinones S.A., Gaytan S.M., Lopez M.I., Martinez E.Y., Medina F., Hernandez D.H., Martinez E., Martinez J.L., et al. Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater. Charact. 2009;60:96–105. doi: 10.1016/j.matchar.2008.07.006. DOI

Leuders S., Thöne M., Riemer A., Niendorf T., Tröster T., Richard H.A., Maier H.J. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue. 2013;48:300–307. doi: 10.1016/j.ijfatigue.2012.11.011. DOI

Thöne M., Leuders S., Riemer A., Tröster T., Richard H. Influence of heat-treatment on Selective Laser Melting products–e.g. Ti6Al4V; Proceedings of the Solid Freeform Fabrication Symposium; Austin, TX, USA. 6–8 August 2012; pp. 492–498.

Rekedal K., Liu D. Fatigue Life of Selective Laser Melted and Hot Isostatically Pressed Ti–6Al–4V Absent of Surface Machining; Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Kissimmee, FL, USA. 5–9 January 2015; Reston, VA, USA: American Institute of Aeronautics and Astronautics; 2015. DOI

Donachie M.J. Titanium: A Technical Guide. 2nd ed. ASM International; Almere, The Netherlands: 2000.

Wycisk E., Emmelmann C., Siddique S., Walther F. High cycle fatigue (HCF) performance of Ti–6Al–4V alloy processed by selective laser melting. Adv. Mater. Res. 2013;816–817:134–139. doi: 10.4028/www.scientific.net/AMR.816-817.134. DOI

Kasperovich G., Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 2015;220:202–214. doi: 10.1016/j.jmatprotec.2015.01.025. DOI

Ukar E., Lamikiz A., De Lacalle L.N.L., Del Pozo D., Liebana F., Sanchez A. Laser polishing parameter optimisation on selective laser sintered parts. Int. J. Mach. Mach. Mater. IJMMM. 2010;8:417–432. doi: 10.1504/IJMMM.2010.036148. DOI

Kahlin M., Ansell H., Moverare J.J. Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces. Int. J. Fatigue. 2017;101:51–60. doi: 10.1016/j.ijfatigue.2017.04.009. DOI

Wycisk E., Solbach A., Siddique S., Herzog D., Walther F., Emmelmann C. Effects of Defects in Laser Additive Manufactured Ti–6Al–4V on Fatigue Properties. Phys. Procedia. 2014;56:371–378. doi: 10.1016/j.phpro.2014.08.120. DOI

Karlsson J., Norell M., Ackelid U., Engqvist H., Lausmaa J. Surface oxidation behavior of Ti–6Al–4V manufactured by Electron Beam Melting (EBM®) J. Manuf. Process. 2015;17:120–126. doi: 10.1016/j.jmapro.2014.08.005. DOI

Murr L.E., Quinones S.A., Gaytan S.M., Lopez M.I., Rodela A., Martinez E.Y., Hernandez D.H., Martinez E., Medina F., Wicker R.B. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2009;2:20–32. doi: 10.1016/j.jmbbm.2008.05.004. PubMed DOI

Biamino S., Penna A., Ackelid U., Sabbadini S., Tassa O., Fino P., Pavese M., Gennaro P., Badini C. Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation. Intermetallics. 2011;19:776–781. doi: 10.1016/j.intermet.2010.11.017. DOI

Zuo J.H., Wang Z.G., Han E.H. Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V. Mater. Sci. Eng. A. 2008;473:147–152. doi: 10.1016/j.msea.2007.04.062. DOI

Gong H., Rafi K., Karthik N., Starr T., Stucker B. Defect morphology in Ti–6Al–4V parts fabricated by selective laser melting and electron beam melting; Proceedings of the Solid Freeform Fabrication Symposium; Austin, TX, USA. 12–14 August 2013; pp. 440–453.

Thijs L., Verhaeghe F., Craeghs T., Humbeeck J.V., Kruth J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58:3303–3312. doi: 10.1016/j.actamat.2010.02.004. DOI

Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. 1st ed. Elsevier; Amsterdam, The Netherlands: 2002.

Bagehorn S., Wehr J., Maier H.J. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti–6Al–4V parts. Int. J. Fatigue. 2017;102:135–142. doi: 10.1016/j.ijfatigue.2017.05.008. DOI

Wysocki B., Idaszek J., Szlązak K., Strzelczyk K., Brynk T., Kurzydłowski K., Święszkowski W. Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering. Materials. 2016;9:197. doi: 10.3390/ma9030197. PubMed DOI PMC

Łyczkowska E., Szymczyk P., Dybała B., Chlebus E. Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing. Arch. Civi. Mech. Eng. 2014;14:586–594. doi: 10.1016/j.acme.2014.03.001. DOI

Truscello S., Kerckhofs G., Van Bael S., Pyka G., Schrooten J., Van Oosterwyck H. Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomater. 2012;8:1648–1658. doi: 10.1016/j.actbio.2011.12.021. PubMed DOI

Kerckhofs G., Van Bael S., Pyka G., Schrooten J., Wevers M. Investigation of the influence of surface roughness modification of bone tissue engineering scaffolds on the morphology and mechanical properties; Proceedings of the SkyScan User Meeting; Mechelen, Belgium. 21–23 April 2010; pp. 1–5.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...