Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29614712
PubMed Central
PMC5951421
DOI
10.3390/ma11040537
PII: ma11040537
Knihovny.cz E-zdroje
- Klíčová slova
- Ti6Al4V, electron beam melting, fatigue, mechanical properties, selective laser melting,
- Publikační typ
- časopisecké články MeSH
Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture-selective laser melting (SLM) and electron beam melting (EBM)-in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.
Zobrazit více v PubMed
Banerjee D., Williams J.C. Perspectives on titanium science and technology. Acta Mater. 2013;61:844–879. doi: 10.1016/j.actamat.2012.10.043. DOI
Edwards P., Ramulu M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater. Sci. Eng. A. 2014;598:327–337. doi: 10.1016/j.msea.2014.01.041. DOI
Murr L.E. Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. J. Mater. Sci. Technol. 2016;32:987–995. doi: 10.1016/j.jmst.2016.08.011. DOI
Levy G.N. The role and future of the laser technology in the additive manufacturing environment. Phys. Procedia. 2010;5:65–80. doi: 10.1016/j.phpro.2010.08.123. DOI
Wong K.V., Hernandez A. A review of additive manufacturing. ISRN Mech. Eng. 2012;2012:208760. doi: 10.5402/2012/208760. DOI
Calleja A., Tabernero I., Fernández A., Celaya A., Lamikiz A., López de Lacalle L.N. Improvement of strategies and parameters for multi-axis laser cladding operations. Opt. Lasers Eng. 2014;56:113–120. doi: 10.1016/j.optlaseng.2013.12.017. DOI
Frazier W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014;23:1917–1928. doi: 10.1007/s11665-014-0958-z. DOI
Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019. DOI
Edwards P., O’Conner A., Ramulu M. Electron beam additive manufacturing of titanium components: Properties and performance. J. Manuf. Sci. Eng. 2013;135:061016. doi: 10.1115/1.4025773. DOI
Murr L.E., Gaytan S.M., Ramirez D.A., Martinez E., Hernandez J., Amato K.N., Shindo P.W., Medina F.R., Wicker R.B. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 2012;28:1–14. doi: 10.1016/S1005-0302(12)60016-4. DOI
Murr L.E., Martinez E., Amato K.N., Gaytan S.M., Hernandez J., Ramirez D.A., Shindo P.W., Medina F., Wicker R.B. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science. J. Mater. Res. Technol. 2012;1:42–54. doi: 10.1016/S2238-7854(12)70009-1. DOI
Günther J., Krewerth D., Lippmann T., Leuders S., Tröster T., Weidner A., Biermann H., Niendorf T. Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. Int. J. Fatigue. 2017;94:236–245. doi: 10.1016/j.ijfatigue.2016.05.018. DOI
Hiemenz J. Electron beam melting. Adv. Mater. Process. 2007;165:45–46.
Rafi H., Karthik N., Gong H., Starr T.L., Stucker B.E. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J. Mater. Eng. Perform. 2013;22:3872–3883. doi: 10.1007/s11665-013-0658-0. DOI
Chan K.S., Koike M., Mason R.L., Okabe T. Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants. Metall. Mater. Trans. A. 2013;44:1010–1022. doi: 10.1007/s11661-012-1470-4. DOI
Zhao X., Li S., Zhang M., Liu Y., Sercombe T.B., Wang S., Hao Y., Yang R., Murr L.E. Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 2016;95:21–31. doi: 10.1016/j.matdes.2015.12.135. DOI
Gong H., Rafi K., Gu H., Janaki Ram G.D., Starr T., Stucker B. Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 2015;86:545–554. doi: 10.1016/j.matdes.2015.07.147. DOI
Greitemeier D., Palm F., Syassen F., Melz T. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int. J. Fatigue. 2017;94:211–217. doi: 10.1016/j.ijfatigue.2016.05.001. DOI
He W., Jia W., Liu H., Tang H., Kang X., Huang Y. Research on preheating of titanium alloy powder in electron beam melting technology. Rare Met. Mater. Eng. 2011;40:2072–2075. doi: 10.1016/S1875-5372(12)60014-9. DOI
Yan C., Hao L., Hussein A., Young P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 2015;51:61–73. doi: 10.1016/j.jmbbm.2015.06.024. PubMed DOI
Gong H., Rafi K., Gu H., Starr T., Stucker B. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. 2014;1–4:87–98. doi: 10.1016/j.addma.2014.08.002. DOI
Simonelli M. Ph.D. Thesis. School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University; Loughborough, UK: 2014. Microstructure Evolution and Mechanical Properties of Selective Laser Melted Ti–6Al–4V.
Fousová M., Vojtěch D., Kubásek J., Jablonská E., Fojt J. Promising characteristics of gradient porosity Ti–6Al–4V alloy prepared by SLM process. J. Mech. Behav. Biomed. Mater. 2017;69:368–376. doi: 10.1016/j.jmbbm.2017.01.043. PubMed DOI
Vilaro T., Colin C., Bartout J.D. As-Fabricated and heat-treated microstructures of the Ti–6Al–4V alloy processed by Selective Laser Melting. Metall. Mater. Trans. A. 2011;42:3190–3199. doi: 10.1007/s11661-011-0731-y. DOI
Xu W., Brandt M., Sun S., Elambasseril J., Liu Q., Latham K., Xia K., Qian M. Additive manufacturing of strong and ductile Ti–6Al–4V by Selective Laser Melting via in situ martensite decomposition. Acta Mater. 2015;85:74–84. doi: 10.1016/j.actamat.2014.11.028. DOI
Ahmed T., Rack H.J. Phase transformations during cooling in α + β titanium alloys. Mater. Sci. Eng. A. 1998;243:206–211. doi: 10.1016/S0921-5093(97)00802-2. DOI
Sallica-Leva E., Caram R., Jardini A.L., Fogagnolo J.B. Ductility improvement due to martensite α′ decomposition in porous Ti–6Al–4V parts produced by selective laser melting for orthopedic implants. J. Mech. Behav. Biomed. Mater. 2016;54:149–158. doi: 10.1016/j.jmbbm.2015.09.020. PubMed DOI
Clemens H., Bartels A., Bystrzanowski S., Chladil H., Leitner H., Dehm G., Gerling R., Schimansky F.P. Grain refinement in γ-TiAl-based alloys by solid state phase transformations. Intermetallics. 2006;14:1380–1385. doi: 10.1016/j.intermet.2005.11.015. DOI
Vrancken B., Thijs L., Kruth J.-P., Van Humbeeck J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J. Alloys Compd. 2012;541:177–185. doi: 10.1016/j.jallcom.2012.07.022. DOI
Fousová M., Vojtěch D., Kubásek J. Titanium alloy Ti–6Al–4V prepared by Selective Laser Melting (SLM) Manuf. Technol. 2016;16:691–697.
Hrabe N., Gnäupel-Herold T., Quinn T. Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. Int. J. Fatigue. 2017;94:202–210. doi: 10.1016/j.ijfatigue.2016.04.022. DOI
Zhai Y., Galarraga H., Lados D.A. Microstructure, static properties, and fatigue crack growth mechanisms in Ti–6Al–4V fabricated by additive manufacturing: LENS and EBM. Eng. Fail. Anal. 2016;69:3–14. doi: 10.1016/j.engfailanal.2016.05.036. DOI
Galarraga H., Warren R.J., Lados D.A., Dehoff R.R., Kirka M.M. Fatigue crack growth mechanisms at the microstructure scale in as-fabricated and heat treated Ti–6Al–4V ELI manufactured by electron beam melting (EBM) Eng. Fract. Mech. 2017;176:263–280. doi: 10.1016/j.engfracmech.2017.03.024. DOI
Murr L.E., Esquivel E.V., Quinones S.A., Gaytan S.M., Lopez M.I., Martinez E.Y., Medina F., Hernandez D.H., Martinez E., Martinez J.L., et al. Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater. Charact. 2009;60:96–105. doi: 10.1016/j.matchar.2008.07.006. DOI
Leuders S., Thöne M., Riemer A., Niendorf T., Tröster T., Richard H.A., Maier H.J. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue. 2013;48:300–307. doi: 10.1016/j.ijfatigue.2012.11.011. DOI
Thöne M., Leuders S., Riemer A., Tröster T., Richard H. Influence of heat-treatment on Selective Laser Melting products–e.g. Ti6Al4V; Proceedings of the Solid Freeform Fabrication Symposium; Austin, TX, USA. 6–8 August 2012; pp. 492–498.
Rekedal K., Liu D. Fatigue Life of Selective Laser Melted and Hot Isostatically Pressed Ti–6Al–4V Absent of Surface Machining; Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Kissimmee, FL, USA. 5–9 January 2015; Reston, VA, USA: American Institute of Aeronautics and Astronautics; 2015. DOI
Donachie M.J. Titanium: A Technical Guide. 2nd ed. ASM International; Almere, The Netherlands: 2000.
Wycisk E., Emmelmann C., Siddique S., Walther F. High cycle fatigue (HCF) performance of Ti–6Al–4V alloy processed by selective laser melting. Adv. Mater. Res. 2013;816–817:134–139. doi: 10.4028/www.scientific.net/AMR.816-817.134. DOI
Kasperovich G., Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 2015;220:202–214. doi: 10.1016/j.jmatprotec.2015.01.025. DOI
Ukar E., Lamikiz A., De Lacalle L.N.L., Del Pozo D., Liebana F., Sanchez A. Laser polishing parameter optimisation on selective laser sintered parts. Int. J. Mach. Mach. Mater. IJMMM. 2010;8:417–432. doi: 10.1504/IJMMM.2010.036148. DOI
Kahlin M., Ansell H., Moverare J.J. Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces. Int. J. Fatigue. 2017;101:51–60. doi: 10.1016/j.ijfatigue.2017.04.009. DOI
Wycisk E., Solbach A., Siddique S., Herzog D., Walther F., Emmelmann C. Effects of Defects in Laser Additive Manufactured Ti–6Al–4V on Fatigue Properties. Phys. Procedia. 2014;56:371–378. doi: 10.1016/j.phpro.2014.08.120. DOI
Karlsson J., Norell M., Ackelid U., Engqvist H., Lausmaa J. Surface oxidation behavior of Ti–6Al–4V manufactured by Electron Beam Melting (EBM®) J. Manuf. Process. 2015;17:120–126. doi: 10.1016/j.jmapro.2014.08.005. DOI
Murr L.E., Quinones S.A., Gaytan S.M., Lopez M.I., Rodela A., Martinez E.Y., Hernandez D.H., Martinez E., Medina F., Wicker R.B. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2009;2:20–32. doi: 10.1016/j.jmbbm.2008.05.004. PubMed DOI
Biamino S., Penna A., Ackelid U., Sabbadini S., Tassa O., Fino P., Pavese M., Gennaro P., Badini C. Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation. Intermetallics. 2011;19:776–781. doi: 10.1016/j.intermet.2010.11.017. DOI
Zuo J.H., Wang Z.G., Han E.H. Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V. Mater. Sci. Eng. A. 2008;473:147–152. doi: 10.1016/j.msea.2007.04.062. DOI
Gong H., Rafi K., Karthik N., Starr T., Stucker B. Defect morphology in Ti–6Al–4V parts fabricated by selective laser melting and electron beam melting; Proceedings of the Solid Freeform Fabrication Symposium; Austin, TX, USA. 12–14 August 2013; pp. 440–453.
Thijs L., Verhaeghe F., Craeghs T., Humbeeck J.V., Kruth J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58:3303–3312. doi: 10.1016/j.actamat.2010.02.004. DOI
Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. 1st ed. Elsevier; Amsterdam, The Netherlands: 2002.
Bagehorn S., Wehr J., Maier H.J. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti–6Al–4V parts. Int. J. Fatigue. 2017;102:135–142. doi: 10.1016/j.ijfatigue.2017.05.008. DOI
Wysocki B., Idaszek J., Szlązak K., Strzelczyk K., Brynk T., Kurzydłowski K., Święszkowski W. Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering. Materials. 2016;9:197. doi: 10.3390/ma9030197. PubMed DOI PMC
Łyczkowska E., Szymczyk P., Dybała B., Chlebus E. Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing. Arch. Civi. Mech. Eng. 2014;14:586–594. doi: 10.1016/j.acme.2014.03.001. DOI
Truscello S., Kerckhofs G., Van Bael S., Pyka G., Schrooten J., Van Oosterwyck H. Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomater. 2012;8:1648–1658. doi: 10.1016/j.actbio.2011.12.021. PubMed DOI
Kerckhofs G., Van Bael S., Pyka G., Schrooten J., Wevers M. Investigation of the influence of surface roughness modification of bone tissue engineering scaffolds on the morphology and mechanical properties; Proceedings of the SkyScan User Meeting; Mechelen, Belgium. 21–23 April 2010; pp. 1–5.
The Use of Selective Laser Melting to Increase the Performance of AlSi₉Cu₃Fe Alloy