Post-Processing Treatment Impact on Mechanical Properties of SLM Deposited Ti-6Al-4 V Porous Structure for Biomedical Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS19/155/OHK2/3T/12
České Vysoké Učení Technické v Praze
TF02000067
Technologická Agentura České Republiky
PubMed
33207787
PubMed Central
PMC7696100
DOI
10.3390/ma13225167
PII: ma13225167
Knihovny.cz E-zdroje
- Klíčová slova
- additive manufacturing (AM), hot isostatic pressing (HIP), selective laser melting, surface treatment, titanium alloy,
- Publikační typ
- časopisecké články MeSH
Additive manufacturing technologies allow producing a regular three-dimensional mesh of interconnected struts that form an open-cell porous structure. Regular porous structures have been used in the orthopedic industry due to outstanding bone anchoring. The aim of the study was to determine how the postprocessing influences the mechanical properties of porous structures made of titanium alloy CL 41TI ELI. The effect of hot isostatic pressing (HIP) as a method of increasing microstructural integrity was investigated here. The influence of surface etching (SE) technique, which was applied to the porous structure for cleaning unmelted titanium powder particles on the surface of connectors from the inner surfaces of a porous structure, was examined in this study. Mechanical properties were investigated by means of compression tests. The results point out that HIP has a minor effect on the mechanical behavior of considered porous structures. The SE is an effective method to clean the surface of a porous structure, which is very important in the case of biomedical applications when loose powder can cause serious health problems. Another effect of the SE is also the strut thickness reduction. Reducing strut thickness of a porous structure with the surface etching decreases its stiffness to the same extent as predicted by the relative density theoretical model but did not result in structural damage.
Zobrazit více v PubMed
Li J., Cui X., Hooper G.J., Lim K.S., Woodfield T.B.F. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J. Mech. Behav. Biomed. Mater. 2020;105:1–18. doi: 10.1016/j.jmbbm.2020.103671. PubMed DOI
Singh S., Ramakrishna S., Singh R. Material issues in additive manufacturing: A review. J. Manuf. Process. 2017;25:185–200. doi: 10.1016/j.jmapro.2016.11.006. DOI
Liu S., Shin Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019;164:1–23. doi: 10.1016/j.matdes.2018.107552. DOI
Warnke P.H., Douglas T.E.L., Wollny P., Sherry E. Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng. Part C Methods. 2009;15:115–124. doi: 10.1089/ten.tec.2008.0288. PubMed DOI
Niinomi M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 1998;243:231–236. doi: 10.1016/S0921-5093(97)00806-X. DOI
Engh C.A., Bobyn J.D., Glassman A.H. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. Bone Jt. J. 1987;69:45–55. doi: 10.1302/0301-620X.69B1.3818732. PubMed DOI
Nagels J., Stokdijk M., Rozing P.M. Stress shielding and bone resorption in shoulder arthroplasty. J. Shouder Elb. Surg. 2003;12:35–39. doi: 10.1067/mse.2003.22. PubMed DOI
Zhang X.Y., Fang G., Leeflang S., Zadpoor A.A., Zhou J. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomater. 2019;84:437–452. doi: 10.1016/j.actbio.2018.12.013. PubMed DOI
Murr L.E. Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants: An overview. J. Mater. Res. Technol. 2020;9:1087–1103. doi: 10.1016/j.jmrt.2019.12.015. DOI
Majumdar T., Eisenstein N., Frith J.E., Cox S.C., Birbils N. Additive manufacturing of titanium alloys for orthopedic applications: A materials science viewpoint. Adv. Eng. Mater. 2018;20:1–28. doi: 10.1002/adem.201800172. DOI
Chamay A., Tschantz P. Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J. Biomech. 1972;5:173–180. doi: 10.1016/0021-9290(72)90053-X. PubMed DOI
Bigerelle M., Anselme K. A kinetic approach to osteoblast adhesion on biomaterial surface. J. Biomed. Mater. Res. Part A. 2005;75:530–540. doi: 10.1002/jbm.a.30473. PubMed DOI
Zhang X.Z., Leary M., Tang H.P., Song T., Qian M. Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges. Curr. Opin. Solid State Mater. Sci. 2018;22:75–99. doi: 10.1016/j.cossms.2018.05.002. DOI
Wieding J., Jonitz A., Bader R. The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials. 2012;5:1336–1347. doi: 10.3390/ma5081336. DOI
Do D.K., Li P. The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting. Virtual Phys. Prototyp. 2016;11:41–47. doi: 10.1080/17452759.2016.1142215. DOI
Elias C.N., Lima J.H.C., Valiev R., Meyers M.A. Biomedical applications of titanium and its alloys. JOM. 2008;60:46–49. doi: 10.1007/s11837-008-0031-1. DOI
Okazaki Y., Ito Y., Kyo K., Tateishi T. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Mater. Sci. Eng. A. 1996;213:138–147. doi: 10.1016/0921-5093(96)10247-1. DOI
Pehlivan E., Roudnicka M., Dzugan J., Koukolikova M., Králík V., Seifi M., Lewandowski J.J., Dalibor D., Daniel M. Effects of build orientation and sample geometry on the mechanical response of miniature CP-Ti Grade 2 strut samples manufactured by laser powder bed fusion. Addit. Manuf. 2020;35:1–10. doi: 10.1016/j.addma.2020.101403. DOI
Attar H., Calin M., Zhang L.C., Scudino S., Eckert J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng. A. 2014;593:170–177. doi: 10.1016/j.msea.2013.11.038. DOI
Sercombe T.B., Li X. Selective laser melting of aluminium and aluminium metal matrix composites: Review. Mater. Technol. 2016;31:77–85. doi: 10.1179/1753555715Y.0000000078. DOI
Seede R., Mostafa A., Brailovski V., Jahazi M., Medraj M. Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted inconel 718: Structure, texture, and phases. J. Manuf. Mater. Process. 2018;2:30. doi: 10.3390/jmmp2020030. DOI
Patel R., Hirsch M., Dryburgh P., Pieris D., Achamfuo-Yeboah S., Smith R., Light R., Sharples S., Clare A., Clark M. Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy. Appl. Sci. 2018;8:1991. doi: 10.3390/app8101991. DOI
Khoo Z.X., An J., Chua C.K., Shen Y.F., Kuo C.N., Liu Y. Effect of heat treatment on repetitively scanned SLM NiTi shape memory alloy. Materials. 2019;12:77. doi: 10.3390/ma12010077. PubMed DOI PMC
Fousová M., Vojtěch D., Doubrava K., Daniel M., Lin C.F. Influence of inherent surface and internal defects on mechanical properties of additively manufactured Ti6Al4V alloy: Comparison between selective laser melting and electron beam melting. Materials. 2018;11:537. doi: 10.3390/ma11040537. PubMed DOI PMC
Gotterbarm M.R., Seifi M., Melzer D., Dzugan J., Salem A.A., Liu Z.H., Korner C. Small scale testing of IN718 single crystals manufactured by EB-PBF. Addit. Manuf. 2020;36:1–14. doi: 10.1016/j.addma.2020.101449. DOI
Shipley H., McDonnell D., Culleton M., Lupoi R., O’Donnell G., Trimble D. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. Int. J. Mach. 2018;128:1–20. doi: 10.1016/j.ijmachtools.2018.01.003. DOI
Kuo Y.-L., Nagahari T., Kakehi K. The effect of post-processes on the microstructure and creep properties of alloy718 built up by selective laser melting. Materials. 2018;11:996. doi: 10.3390/ma11060996. PubMed DOI PMC
Ahlfors M., Bahbou F., Ackelid U. Optimizing HIP and Printing Parameters for EBM Ti-6Al-4V. Quintus Technologies 2018. [(accessed on 28 October 2020)]; Available online: https://quintustechnologies.com/knowledge-center/white-paper-optimizing-hip-and-printing-parameters-for-ebm-ti-6al-4v/
Harun W.S.W., Kamariah M.S.I.N., Muhamad N., Ghani S.A.C., Ahmad F., Mohamed Z. A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol. 2018;327:128–151. doi: 10.1016/j.powtec.2017.12.058. DOI
Mombelli A., Hashim D., Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin. Oral Implant. Res. 2018;29:37–53. doi: 10.1111/clr.13305. PubMed DOI
Hlinka J., Kvicala M., Lasek S. Corrosion properties of porous titanium sinteres with sodium chloride; Proceedings of the METAL 2015—24th International Conference on Metallurgy and Materials; Brno, Czech Republic. 3–5 June 2015.
Frisken K.W., Dandie G.W., Lugowski S., Jordan G. A study of titanium release into body organs following the insertion of single threaded screw implants into the mandibles of sheep. Aust. Dent. J. 2002;47:214–217. doi: 10.1111/j.1834-7819.2002.tb00331.x. PubMed DOI
Heringa M.B., Peters R., Bleys R.L.A.W. Detection of titanium particles in human liver and spleen and possible health implications. Part. Fibre Toxicol. 2018;15:1–9. doi: 10.1186/s12989-018-0251-7. PubMed DOI PMC
Woodman J.L., Jacobs J.J., Galante J.O., Urban R.M. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: A long-term study. J. Orthop. Res. 1984;1:421–430. doi: 10.1002/jor.1100010411. PubMed DOI
Bartolo P., Kruth J.P., Silva J., Levy G., Malshe A., Rajurkar K., Mitsuishi M., Ciurana J., Leu M. Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann. Manuf. Technol. 2012;61:635–655. doi: 10.1016/j.cirp.2012.05.005. DOI
Fojt J., Kacenka Z., Jablonska E., Hybasek V., Pruchova E. Influence of the surface etching on the corrosion behaviour of a three-dimensional printed Ti–6Al–4V alloy. Mater. Corros. 2020 doi: 10.1002/maco.202011658. DOI
Pehlivan E. Ph.D. dissertation. Czech Technical University in Prague; Prague, Czechia: 2019. Developing Trabecular Structure.
CONCEPTLASER CL 41TI ELI Titanium Alloy. [(accessed on 1 October 2020)]; Available online: https://www.ge.com/additive/sites/default/files/2018-12/CLMAT_41TI%20ELI_DS_EN_US_2_v1.pdf.
Ter Haar G.M., Becker T.H. Selective laser melting produced Ti-6Al-4V: Post-process heat treatments to achieve superior tensile properties. Materials. 2018;11:146. doi: 10.3390/ma11010146. PubMed DOI PMC
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:1–26. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Zadpoor A.A., Hedayati R. Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials. J. Biomed. Mater. Res. A. 2016;104:3164–3174. doi: 10.1002/jbm.a.35855. PubMed DOI PMC
Hedayati R., Sadighi M., Mohammadi-Aghdam M., Zadpoor A.A. Effect of mass multiple counting on the elastic properties of open-cell regular porous biomaterials. Mater. Des. 2016;89:9–20. doi: 10.1016/j.matdes.2015.09.052. DOI
Ahmadi S.M., Yavari S.A., Wauthle R., Pouran B., Schrooten J., Weinans H., Zadpoor A.A. Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties. Materials. 2015;8:1871–1896. doi: 10.3390/ma8041871. PubMed DOI PMC
ISO . ISO 13314. Mechanical Testing of Metals Ductility Testing Compression Test for Porous and Cellular Metals. International Organization for Standardization; Geneva, Switzerland: 2011.
Cheng X.Y., Li S.J., Murr L.E., Zhang Z.B., Hao Y.L., Yang R., Medina F., Wicker R.B. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 2012;16:153–162. doi: 10.1016/j.jmbbm.2012.10.005. PubMed DOI
Song Y., Xu D.S., Yang R., Li D., Wu W.T., Guo Z.X. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Mater. Sci. Eng. A. 2002;260:269–274. doi: 10.1016/S0921-5093(98)00886-7. DOI
Oh I.H., Nomura N., Masahashi N., Hanada S. Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering. Mater. Trans. 2003;49:1197–1202. doi: 10.2320/matertrans.43.443. DOI
Krishna B.V., Bose S., Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomater. 2007;3:997–1006. doi: 10.1016/j.actbio.2007.03.008. PubMed DOI
Shirazi S.F.S., Gharehkhani S., Mehrali M., Yarmand H., Metselaar H.S.C., Kadri N.A., Osman N.A.A. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 2015;16:1–20. doi: 10.1088/1468-6996/16/3/033502. PubMed DOI PMC
Clarke D.R. Interpenetrating phase composites. J. Am. Ceram. Soc. 1992;75:739–759. doi: 10.1111/j.1151-2916.1992.tb04138.x. DOI