Francisella tularensis D-Ala D-Ala Carboxypeptidase DacD Is Involved in Intracellular Replication and It Is Necessary for Bacterial Cell Wall Integrity
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
29692981
PubMed Central
PMC5903032
DOI
10.3389/fcimb.2018.00111
Knihovny.cz E-resources
- Keywords
- DacD, Francisella, carboxypeptidase, membrane defects, penicillin binding proteins, phagosomal escape, virulence,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Cell Wall metabolism MeSH
- Serine-Type D-Ala-D-Ala Carboxypeptidase genetics metabolism MeSH
- Francisella tularensis drug effects growth & development pathogenicity MeSH
- Cells, Cultured MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Peptidoglycan biosynthesis MeSH
- Protein Disulfide-Isomerases genetics MeSH
- Penicillin-Binding Proteins genetics metabolism MeSH
- Microscopy, Electron, Transmission MeSH
- Tularemia microbiology pathology MeSH
- Virulence genetics MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Serine-Type D-Ala-D-Ala Carboxypeptidase MeSH
- Peptidoglycan MeSH
- Protein Disulfide-Isomerases MeSH
- Penicillin-Binding Proteins MeSH
D-alanyl-D-alanine carboxypeptidase, product of dacD gene in Francisella, belongs to penicillin binding proteins (PBPs) and is involved in remodeling of newly synthetized peptidoglycan. In E. coli, PBPs are synthetized in various growth phases and they are able to substitute each other to a certain extent. The DacD protein was found to be accumulated in fraction enriched in membrane proteins from severely attenuated dsbA deletion mutant strain. It has been presumed that the DsbA is not a virulence factor by itself but that its substrates, whose correct folding and topology are dependent on the DsbA oxidoreductase and/or isomerase activities, are the primary virulence factors. Here we demonstrate that Francisella DacD is required for intracellular replication and virulence in mice. The dacD insertion mutant strain showed higher sensitivity to acidic pH, high temperature and high osmolarity when compared to the wild-type. Eventually, transmission electron microscopy revealed differences in mutant bacteria in both the size and defects in outer membrane underlying its SDS and serum sensitivity. Taken together these results suggest DacD plays an important role in Francisella pathogenicity.
Department of Biology of the Cell Nucleus Institute of Molecular Genetics ASCR v v i Prague Czechia
Department of Microbiology and Parasitology Medical Faculty University of Rijeka Rijeka Croatia
See more in PubMed
Alkhuder K., Meibom K. L., Dubail I., Dupuis M., Charbit A. (2009). Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLoS Pathog. 5:e1000284. 10.1371/journal.ppat.1000284 PubMed DOI PMC
Asare R., Abu Kwaik Y. (2010). Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by Francisella tularensis. Environ. Microbiol. 12, 2559–2586. 10.1111/j.1462-2920.2010.02229.x PubMed DOI PMC
Asare R., Akimana C., Jones S., Abu Kwaik Y. (2010). Molecular bases of proliferation of Francisella tularensis in arthropod vectors. Environ. Microbiol. 12, 2587–2612. 10.1111/j.1462-2920.2010.02230.x PubMed DOI PMC
Baquero M. R., Bouzon M., Quintela J. C., Ayala J. A., Moreno F. (1996). dacD, an Escherichia coli gene encoding a novel penicillin-binding protein (PBP6b) with DD-carboxypeptidase activity. J. Bacteriol. 178, 7106–7111. 10.1128/jb.178.24.7106-7111.1996 PubMed DOI PMC
Biswas S., Raoult D., Rolain J.-M. (2008). A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int. J. Antimicrob. Agents 32, 207–220. 10.1016/j.ijantimicag.2008.03.017 PubMed DOI
Bönquist L., Lindgren H., Golovliov I., Guina T., Sjöstedt A. (2008). MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect. Immun. 76, 3502–3510. 10.1128/IAI.00226-08 PubMed DOI PMC
Brambilla L., Morán-Barrio J., Viale A. M. (2014). Low-molecular-mass penicillin binding protein 6b (DacD) is required for efficient GOB-18 metallo-β-lactamase biogenesis in Salmonella enterica and Escherichia coli. Antimicrob. Agents Chemother. 58, 205–211. 10.1128/AAC.01224-13 PubMed DOI PMC
Brotcke A., Weiss D. S., Kim C. C., Chain P., Malfatti S., Garcia E., et al. . (2006). Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect. Immun. 74, 6642–6655. 10.1128/IAI.01250-06 PubMed DOI PMC
Celli J., Zahrt T. C. (2013). Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb. Perspect. Med. 3:a010314. 10.1101/cshperspect.a010314 PubMed DOI PMC
Chamberlain R. E. (1965). Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl. Microbiol. 13, 232–235. PubMed PMC
Chandler C. E., Ernst R. K. (2017). Bacterial lipids: powerful modifiers of the innate immune response. F1000Res. 6:F1000. 10.12688/f1000research.11388.1 PubMed DOI PMC
Chong A., Wehrly T. D., Child R., Hansen B., Hwang S., Virgin H. W., et al. . (2012). Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway. Autophagy 8, 1342–1356. 10.4161/auto.20808 PubMed DOI PMC
Clemens D. L., Lee B.-Y., Horwitz M. A. (2009). Francisella tularensis Phagosomal escape does not require acidification of the phagosome. Infect. Immun. 77, 1757–1773. 10.1128/IAI.01485-08 PubMed DOI PMC
Dankova V., Balonova L., Link M., Straskova A., Sheshko V., Stulik J. (2016). Inactivation of Francisella tularensis gene encoding putative ABC transporter has a pleiotropic effect upon production of various glycoconjugates. J. Proteome Res. 15, 510–524. 10.1021/acs.jproteome.5b00864 PubMed DOI
Denome S. A., Elf P. K., Henderson T. A., Nelson D. E., Young K. D. (1999). Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 181, 3981–3993. PubMed PMC
Dieppedale J., Gesbert G., Ramond E., Chhuon C., Dubail I., Dupuis M., et al. . (2013). Possible links between stress defense and the tricarboxylic acid (TCA) Cycle in Francisella Pathogenesis. Mol. Cell. Proteomics 12, 2278–2292. 10.1074/mcp.M112.024794 PubMed DOI PMC
Egan A. J. F., Biboy J., van't Veer I., Breukink E., Vollmer W. (2015). Activities and regulation of peptidoglycan synthases. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370:20150031. 10.1098/rstb.2015.0031 PubMed DOI PMC
Fuller J. R., Craven R. R., Hall J. D., Kijek T. M., Taft-Benz S., Kawula T. H. (2008). RipA, a cytoplasmic membrane protein conserved among Francisella species, is required for intracellular survival. Infect. Immun. 76, 4934–4943. 10.1128/IAI.00475-08 PubMed DOI PMC
Ghosh A. S., Chowdhury C., Nelson D. E. (2008). Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends Microbiol. 16, 309–317. 10.1016/j.tim.2008.04.006 PubMed DOI
Glauner B., Höltje J. V. (1990). Growth pattern of the murein sacculus of Escherichia coli. J. Biol. Chem. 265, 18988–18996. PubMed
Henderson T. A., Dombrosky P. M., Young K. D. (1994). Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli. J. Bacteriol. 176, 256–259. 10.1128/jb.176.1.256-259.1994 PubMed DOI PMC
Henderson T. A., Templin M., Young K. D. (1995). Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli. J. Bacteriol. 177, 2074–2079. 10.1128/jb.177.8.2074-2079.1995 PubMed DOI PMC
Henderson T. A., Young K. D., Denome S. A., Elf P. K. (1997). AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J. Bacteriol. 179, 6112–6121. 10.1128/jb.179.19.6112-6121.1997 PubMed DOI PMC
Matsuhashi M. (1994). Chapter 4: Utilization of lipid-linked precursors and the formation of peptidoglycan in the process of cell growth and division: membrane enzymes involved in the final steps of peptidoglycan synthesis and the mechanism of their regulation, in New Comprehensive Biochemistry, eds Ghuysen J.-M., Hakenbeck R. (Amsterodam: Elsevier; ), 55–71.
Milton D. L., O'Toole R., Horstedt P., Wolf-Watz H. (1996). Flagellin A is essential for the virulence of Vibrio anguillarum. J. Bacteriol. 178, 1310–1319. PubMed PMC
Nelson D. E., Young K. D. (2001). Contributions of PBP 5 and DD-carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli. J. Bacteriol. 183, 3055–3064. 10.1128/JB.183.10.3055-3064.2001 PubMed DOI PMC
Pavkova I., Kopeckova M., Klimentova J., Schmidt M., Sheshko V., Sobol M., et al. . (2017). The multiple localized glyceraldehyde-3-phosphate dehydrogenase contributes to the attenuation of the Francisella tularensis dsbA deletion mutant. Front. Cell. Infect. Microbiol. 7:503. 10.3389/fcimb.2017.00503 PubMed DOI PMC
Pechous R. D., McCarthy T. R., Mohapatra N. P., Soni S., Penoske R. M., Salzman N. H., et al. . (2008). A Francisella tularensis Schu S4 purine auxotroph is highly attenuated in mice but offers limited protection against homologous intranasal challenge. PLoS ONE 3:e2487. 10.1371/journal.pone.0002487 PubMed DOI PMC
Peters K., Kannan S., Rao V. A., Biboy J., Vollmer D., Erickson S. W., et al. . (2016). The redundancy of peptidoglycan carboxypeptidases ensures robust cell shape maintenance in Escherichia coli. MBio 7:e00819-16. 10.1128/mBio.00819-16 PubMed DOI PMC
Qin A., Zhang Y., Clark M. E., Moore E. A., Rabideau M. M., Moreau G. B., et al. . (2016). Components of the type six secretion system are substrates of Francisella tularensis Schu S4 DsbA-like FipB protein. Virulence 7, 882–894. 10.1080/21505594.2016.1168550 PubMed DOI PMC
Ren G., Champion M. M., Huntley J. F. (2014). Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol. Microbiol. 94, 926–944. 10.1111/mmi.12808 PubMed DOI PMC
Rioseras B., Yagüe P., López-García M. T., Gonzalez-Quiñonez N., Binda E., Marinelli F., et al. . (2016). Characterization of SCO4439, a D-alanyl-D-alanine carboxypeptidase involved in spore cell wall maturation, resistance, and germination in Streptomyces coelicolor. Sci. Rep. 6:21659. 10.1038/srep21659 PubMed DOI PMC
Rodriguez S. A., Yu J.-J., Davis G., Arulanandam B. P., Klose K. E. (2008). Targeted inactivation of Francisella tularensis genes by group II introns. Appl. Environ. Microbiol. 74, 2619–2626. 10.1128/AEM.02905-07 PubMed DOI PMC
Rowe H. M., Huntley J. F. (2015). From the outside-in: the Francisella tularensis envelope and virulence. Front. Cell. Infect. Microbiol. 5:94. 10.3389/fcimb.2015.00094 PubMed DOI PMC
Santic M., Molmeret M., Barker J. R., Klose K. E., Dekanic A., Doric M., et al. . (2007). A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell. Microbiol. 9, 2391–2403. 10.1111/j.1462-5822.2007.00968.x PubMed DOI
Sarkar S. K., Dutta M., Chowdhury C., Kumar A., Ghosh A. S. (2011). PBP5, PBP6 and DacD play different roles in intrinsic β-lactam resistance of Escherichia coli. Microbiol. Read. Engl. 157, 2702–2707. 10.1099/mic.0.046227-0 PubMed DOI
Schiffer G., Höltje J. V. (1999). Cloning and characterization of PBP 1C, a third member of the multimodular class A penicillin-binding proteins of Escherichia coli. J. Biol. Chem. 274, 32031–32039. 10.1074/jbc.274.45.32031 PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. . (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Simon R., Priefer U., Pühler A. (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1, 784–791. 10.1038/nbt1183-784 DOI
Sommer C., Strähle C., Köthe U., Hamprecht F. A. (2011). ilastik: interactive learning and segmentation toolkit, in Proceedings of Eighth IEEE International Symposium on Biomedical Imaging (ISBI) (Chigaco, IL: ), 230–233.
Sorokin V. M., Pavlovich N. V., Prozorova L. A. (1996). Francisella tularensis resistance to bactericidal action of normal human serum. FEMS Immunol. Med. Microbiol. 13, 249–252. 10.1111/j.1574-695X.1996.tb00246.x PubMed DOI
Spidlova P., Senitkova I., Link M., Stulik J. (2017). Identification of two substrates of FTS_1067 protein - An essential virulence factor of Francisella tularensis. Acta Microbiol. Immunol. Hung. 64, 37–49. 10.1556/030.63.2016.013 PubMed DOI
Spratt B. G. (1975). Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc. Natl. Acad. Sci. U.S.A. 72, 2999–3003. 10.1073/pnas.72.8.2999 PubMed DOI PMC
Szybalski W., Bryson V. (1952). Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 64, 489–499. PubMed PMC
Vollmer W., Blanot D., de Pedro M. A. (2008a). Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167. 10.1111/j.1574-6976.2007.00094.x PubMed DOI
Vollmer W., Joris B., Charlier P., Foster S. (2008b). Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286. 10.1111/j.1574-6976.2007.00099.x PubMed DOI
Wallqvist A., Memišević V., Zavaljevski N., Pieper R., Rajagopala S. V., Kwon K., et al. . (2015). Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors. BMC Genomics 16:1106. 10.1186/s12864-015-2351-1 PubMed DOI PMC
Wehrly T. D., Chong A., Virtaneva K., Sturdevant D. E., Child R., Edwards J. A., et al. . (2009). Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell. Microbiol. 11, 1128–1150. 10.1111/j.1462-5822.2009.01316.x PubMed DOI PMC
Breaking the cellular defense: the role of autophagy evasion in Francisella virulence
Bacteriophage SPO1 protein Gp46 suppresses functions of HU protein in Francisella tularensis